对线性代数 简单、明了 的几何理解

数学需要的不是天赋,而是少量的自由想象,但想象太过自由又会陷入疯狂——安古斯\罗杰斯

本文参考《程序员的数学》、《线性代数几何理解》等总结而来,学生党出错误在所难免,还请批评指正,共同进步。

目录

.线性代数基础

1.1几何理解

1.2向量究竟是什么

1.3线性组合,空间,基

1.4矩阵与线性变换

1.5行列式

1.6逆空间,列空间,秩,零空间

1.7基

1.8特征向量和特征值

1.9抽象向量空间

.线性代数计算

2.1向量加法

2.2向量数乘

2.3矩阵乘法与线性变换复合

2.5叉积

2.6 B=A-1MA


一.线性代数基础

1.1几何理解

        我们在课堂上学的线性代数,重点是学的计算。点乘,正交,正定,特征值等计算都是从数值上理解线性代数。很少有从几何角度去直观理解线性代数,但是从几何角度去理解线性代数,能让我们知道解决某个特定问题用什么工具,而数值计算是为了让你能够熟练用这些工具,是有本质区别的。就像矩阵计算为什么要这么定义?特征值特征向量究竟代表什么?在这里我们把重点放到几何直观的角度,再来学一下线性代数。

1.2向量究竟是什么?

计算机学生眼中的向量和物理专业的不太一样。物理中向量是个箭头,有方向有长度。程序员眼中的向量则是数字列表。为什么这么说呢,比如[S M],其中S是房屋的面积,M是房屋的价格,这个向量就是对房屋价格的建模,在这里,向量只是“列表”一个花哨的说法。

向量可以看做从原点出发的一个箭头。列表到箭头的转换。

1.3线性组合,空间,基

向量坐标:举个例子如(3,2)是将 拉伸了三倍,拉伸了二倍(i,j是基底)。3,2是常数在向量数乘里可以看成是对向量的拉伸,拉伸的就是基向量。所以向量坐标可以理解为“缩放向量并且相加”。每次使用坐标时,我们都要想到它依赖于我们选择的基向量(张成该空间的一个线性无关向量的集合)。

线性组合:aV+b怎么理解线性,当我们固定a或者b不变不断改变另一个,最终的和向量末端应该连成一条直线。

线性相关与线性无关:当移除一个向量而不会使向量空间发生变化时,我们就说他们是线性相关的。如:向量u不能由V,W线性组合得到,就是u与其线性无关,不在V,W确定的平面内。

向量空间:两个向量张成的空间,说的就是仅通过加法和数乘(接下来会讲到)你能得到的向量集合是什么。当用箭头填充整个平面时会感觉拥挤,所以简化为终点,这样考虑一条线上所有向量就简化成考虑这条直线,考虑空间内所有向量就简化成二维平面本身。

1.4矩阵与线性变换

线性变换:函数是输入数输出结果也是数,线性变换是输入向量而已。变换暗示你用“运动”去思考,从输入向量移动到输出向量。

线性变换有两个条件:1.变换前后直线还是直线(别忘记看网格对角线),所以应该说“保持网格平行且等距分布”2.原点不变

线性变换计算只需找到变换后的基向量的位置即可得到所有向量变换后的坐标。 

矩阵:就是用来表示线性变换的

非方阵:3*2的矩阵是把二维向量变成三维,同理2*3。

1.5行列式

行列式:用来表示变换前后面积变化。与向量变换一样,只需要看i,j围成的小正方形面积变化即可推理其他图像面积变化(根据网格平行且等距分布可以推出),不规则图形可以微分成面积无限小的小矩形。

行列式负数意义:平面(空间是右手系变为左手系)发生翻转,i,j定向发生改变。但是绝对值仍是面积变化大小 。

1.6逆空间,列空间,秩,零空间

矩阵一个应用:求解线性方程组。xA变换到v。或者vA-1变换为x,当|A|!=0时(空间不被压缩降维,A才有逆矩阵,想一下,从一条线是还原不成一个面的),只有一个x满足方程组。

列空间:列张成的空间

 秩:代表变换后空间的维度,更精确就是列空间的维度。当秩=列数,称为满秩。对满秩变换来说唯一能落在原点的就是零向量。

零空间或核:就是变换后降维了,落在原点的所有向量(二维->一个点,一个平面的向量都在零空间)。当v等于0,可求出零空间的所有向量

1.7基

空间中向量是固定的,但是描述这个向量的方法是多种多样的,根据基底的选择有不同的描述方法。基底之间的相互转化,就是之前的所说的线性变换所乘的那个矩阵。选择了不同的基底,其实就类似于选择了不同的语言,描述的东西一样,但是语言不一样。

1.8特征向量和特征值

AX=aX,乘A后方向不变(仍停留在原向量所展成的空间中)的向量叫做特征值a的特征向量。(A-aI)X=0,结合之前的讲的行列式,矩阵乘向量降维了,所以|A-aI|=0,求出a,带回方程组,即可求得在这个特征值下对应的特征向量(解线性方程组)。

不一定空间中存在特征向量(行列式=0无解)。如将坐标系转九十度,所有向量经过变换方向都变了。

一个特征值可能对应的向量可能不在一条直线上。比如将空间扩大两倍

1.9抽象向量空间

函数也可以抽象为向量,存在于函数空间中。

数学家想的是我不管你定义的啥空间,空间里是向量,函数,不明生物集合。我给你制定好计算法则,我只需要证明是否符合这些法则,是否符合这些公理即可。

普世的代价就是——抽象

二.线性代数计算

2.1向量加法

为什么可以移动两个向量使其首尾相连计算出相加后向量呢?可以把向量方向和大小看做前进方向和前进距离。

2.2向量数乘

数字乘向量。a*A就是把这个向量进行缩放a倍。加法和数乘是线性代数最基本的两种运算。

2.3矩阵乘法与线性变换复合

比起数值计算,我们要养成思考矩阵乘法的意义这个思维

多个矩阵相乘怎么理解[e g].T和[f h].T是第一次变换后的i,j 再分别对i,j乘M2得到最终变换后的两个基向量。

2.4点积

 点积的计算就是对应元素相乘后相加。等价于vu向量上投影长度乘以u长度。

那为什么对应元素相乘等价于投影呢?这里用到对偶性(自然而然而又出乎意料的对应关系)

那个1*2的矩阵(二维->一维)和向量乘法是不是和对应坐标相乘求和很像。一个向量的对偶是它定义的线性变换(正因为是一个变换,二维向量投影到一维向量)

2.5叉积

V*W是求V,W围成平行四边形的面积。

2.6 B=A-1MA

A是基变换矩阵,比如从m,n变换到i,j基底,M是在i,j基底下旋转九十度,然后再变换回m,n,那么在m,n基底下乘B就是旋转90。

A为特征向量作为基底的基变换矩阵时,A-1MA得到的必然是一个对角矩阵,而且对角元素为特征值

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值