线代学习笔记(一)——线性代数的通俗理解

线性代数通俗理解

本篇笔记内容主要来源于45分钟线性代数通俗讲解_哔哩哔哩_bilibili,非常感谢up主的分享,这里我加入了部分自己的理解,与自己所学的知识结合完成。

基础概念

数据的维度:即数据含有参数的个数,描述一个对象所需要的参数个数,这样一组数据构成一个多维数据,如一个空间坐标(1,2),一个空间向量[1,2,3]。

对线性的理解:线性即均匀分布,对加法有意义,如数轴上的数。线性函数的特点输入值均匀排列,输出值均匀排列,在线性代数里,线性函数是一个线性映射,输入与输出在相同域的向量空间上维持向量加法与标量乘法。线性代数中,线性变换处理的输入输出数据维度是任意的(与初级代数最明显的区别)。

在线代的观点里,空间中的每一个值都是通过单位向量基向量)拉伸来的,一维空间只有一个单位向量。线性函数的职责只是告诉我们输出空间的基向量是什么,在线性变化中从输入向量到输出向量,其与基向量之间的关系不会发生变化,只是基向量发生了变化。

例如:在二维坐标空间里,基向量为i=[1,0]和j=[0,1],设输入向量为a=[1,2],实际是a=1*i+2*j得到的,经过y=2x变换后,输出向量为b=[2,4],但实际上是基向量变为了i=[2,0]和j=[0,2],而b与基向量的关系没有发生变化,实际上还是b=1*i+2*j=a,只是基向量发生了变化。

接下来我们看三种拉伸变换:

拉伸标准基向量得到一个特定的向量确定向量与基的关系
拉伸整个输入空间得到特定的输出空间即线性函数,表明基向量的变换,让向量与基向量之间的关系保持不变
拉伸某个向量得到这个向量的线性组合对单个向量进行线性组合得到的所有向量叫做这个向量的张成空间

这里对0向量的各种拉伸得到的还是零,所以0向量的张成空间还是0。

线性组合以及张成空间在多维空间经常使用。

四种描述线性函数的方式:

  • 若输入值均匀排列,输出值也均匀排列

  • 在坐标空间按刻度画的网格在变换前后保持平行且等距分布

  • 满足向量加法

  • 所有向量在变换前后基向量的关系保持不变

线性变换的过程的理解

下面是二维空间中线性变换的过程

线性变换的流程

在一维空间中,线性变换表达式为y=kx+b

可以看出二维空间中情况类似,在二维空间中,线性变换的表达式自变量变为了二维数据,自变量前面的矩阵表示两个基向量的变化情况。

在任意维空间中

n个线性无关的n维向量线性组合可以张成n维空间

如果一个n维空间通过线性变换之后仍是n维空间,则这个线性变换为满秩变换。

函数与变换:

函数(function)分为变换(transformation)和映射(mapping)两种形式,但是在线性代数中映射关系并不明显。

线性函数也可以实现不同维度的空间的映射,如下:

二维空间向三维空间的映射

复合函数

多个线性变换可以通过矩阵相乘得到最终的变换结果,矩阵相乘原理上与复合函数算法类似,不能交换运算顺序,同时遵循左行右列定理。

行列式与特征值

行列式可以理解为线性变换前后,单位面积、体积的比值。

行列式的理解

当行列式的值为零时,说明变换后的空间体积为0,此时必有向量线性相关,高维空间压缩到低维空间。

在线性变换中,大多数向量的都会发生旋转,找到变换中未发生旋转变换的向量即为该线性变换的特征向量,对特征向量的拉伸值即为线性变化的特征值。公式如下:

A v=λ v

该公式中A表示线性变换矩阵,v为所求的特征向量,λ表示常数,这里表示线性变换的特征值,λ v为数乘变换或者伸缩变换。

通常对该公式进行下列变换进行运算。

​ A v - (λ E) v = 0

​ (A - λE) v = 0 将向量v变为0向量,只能通过线性变换(A - λE)将向量v挤压为低维空间

即 det(A - λE)= 0 这里使用到了行列式性质

两个向量的投影

向量[d e f]向[a b c]进行投影
两个向量的投影

结语

(摘录了一些有感触的话)

现实生活中,还有很多人类能感知的信息属于非线性关系,如人对声音的感觉,人对亮度的感觉等,但是我们都可以通过一定处理方法将非线性信息转换为线性信息,把从乘法转化为对加法有意义,从而变为我们所理解的形式,换句话说,所有人能理解的信息都能写成线性的形式。

所有我们学过的数理知识,都是一套基于公理(人所认为正确的道理)推导出来的计算工具,虽然它们并不是世界的全部,但是这些计算工具,既可以帮我们解决现实中的问题,又能帮我们探索未知。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值