几何模型理解线性代数

线性代数的本质

1 向量究竟是什么

向量究竟是什么

线性代数中最基础最根源的部分就是向量, 所以要在向量是什么基础上达成共识。 有三种看待向量的观点, 物理专业角度, 计算机专业角度以及数学家的视角

  • 物理学专特的角度:向量是空间中的箭头,决定一个向量的是它的长度和它指的方向, 是可以随意移动的。

  • 计算机专业学生角度, 向量是有序的数字列表, 例如用向量建模。这里的向量只是列表的另一个表达形式。

  • 数学家打算概括这两种观点, 认为向量可以是任何东西, 只要保证两个向量相加以及数字与向量相乘有意义即可。

        利用二维空间理解矩阵, 一个二维列向量, 第一个数告诉你沿着x轴走多远, 正数向左, 负数向右, 第二个数告诉你在此之后沿着y轴方向走多远(用这种方式理解向量加法的定义)(将每个向量看做一种特定的运动), 正数向上,负数向下, 两个数之间不能交换。 为了将向量和点区分开, 所以惯用的方式是把这对数竖着写, 然后用方括号括起来, 每一对数给出唯一一个向量, 每一个向量有唯一一对数。
    
      三维空间中, 每个向量就与一个有序的三元数组对应, 三个数的意义同理, 形象勾勒出向量的空间形象。
    

向量的加法和向量的数乘

    首先是向量的加法定义, 高中学过。这个向量的加法的定义差不多是线性代数中唯一允许向量离开原点的情形。 然后两个二位列向量相加的过程本质就是两个向量在坐标系中形成新的向量的过程, 新向量的第一个数(x)是前两个向量在x轴方向运动的距离和, 新向量的第二个数是前两个向量在y轴方向运动的距离和。这就是为什么向量的加法是对应向 的加和。

    向量数乘。向量数乘过程,类似拉伸压缩的过程, 称为  ‘’缩放‘’, 对应于将每一个分量分别乘缩放 。缩放量称为标量, 自始至终, 数字在线性代数中的主要作用就是缩放量, 

向量的加法和向量的数乘贯穿线性代数始终。

实际上你怎么看待向量都无所谓, 箭头或数据表, 更多体现在这些观点中相互转化。线性代数为数据分析提供了一条将大量数据列表化, 概念化,可视化的渠道。

另一方面, 线性代数给物理学家和计算机图形程序员提供了一种语言, 用计算机能处理的数字来描述并操纵空间,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值