机器学习_个人笔记_周志华(停更中......)

第1章 绪论

1.1 引言

形成优秀的心理表征,自然能成为领域内的专家。
系统1 & 系统2。

机器学习:致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。主要研究计算机从数据中产生model的算法,即“learning algorithm”。
“经验”通常的存在形式——“数据”。

1.2 基本术语

数据集
每条记录——示例——样本
属性
属性值
属性空间——样本空间——输入空间
一个示例——特征向量(feature vector)
训练样本——训练示例(training instance)——训练例

学得模型亦称hypothesis,学习过程是为了逼近ground-truth。本书有时称模型为“学习器”(learner)。

标记空间(label space)——输出空间
分类(classificatioin):离散值预测类的学习任务。
回归(regression): 连续值预测类任务。
binary classification任务:includes positive class & negative class。
multi-class classification

预测类任务是希望建立输入空间x到输出空间y的映射f

testing:使用学得模型进行预测的过程。
testing sample:被预测的样本。
clustering
cluster

据training data是否拥有label information,划分为supervised learning & unsupervised learning,classification和regression是前者的代表,而clustering是后者的代表。

“泛化(generalization)”能力

1.3 假设空间

科学推理的两大基本手段:induction(归纳)& deduction(演绎)。
induction: 从特殊到一般。
deduciton: 从generalization到specialization。

inductive learning(归纳学习)——从样例中学习。分为广义和狭义。

version space

1.4 归纳偏好

inductive bias:机器学习算法在学习过程中对某种类型假设的偏好。任何一个有效的机器学习算法必有其归纳偏好,否则无法产生确定的学习结果。

Attention!!!
在这里插入图片描述
NFL定理:No Free Lunch Theorem!
NFL定理的重要前提:…
NFL Theorem的寓意:具体问题具体分析。学习算法自身的induction bias与problems是否相配,往往起决定性作用。

1.5 发展历程

20世纪50年代到70年代初:AI研究处于“推理期”。
20世纪70年代中期开始,”知识期“。
20世纪80年代,ML成为一个独立的学科领域,各种ML技术百花初绽——学习期。

本书大部分内容均属于广义的induction learning范畴,涵盖supervised learning and unsupervised learning等等。

ILP:Inductive Logic Programming(归纳逻辑程序设计)。

参数调节上失之毫厘,学习结果可能谬之千里。

statistical learning(统计学习)
Support Vector Machine(SVM,支持向量机)

深度学习:狭义地说是“很多层”的神经网络。

ML已发展为一个相当大的学科领域,本节仅管中窥豹。耐心读完本书会有更全面的了解。

1.6 应用现状

在CV及NLP等“计算机应用技术”领域,ML已成为最重要的技术进步源泉之一。ML也为许多交叉学科提供重要的技术支撑。
“数据分析”是ML技术的舞台。

ML提供数据分析能力,云计算提供数据处理能力,众包(crowdsourcing)提供数据标记能力。

数据挖掘(data mining)。
数据挖掘与机器学习的联系。
数据库领域研究为数据挖掘提供数据管理技术。ML和统计学的研究为data mining提供数据分析技术。

ML技术是建立输入与输出之间联系的内核。

奥巴马的“竞选核武器”——R.Ghani领导的机器学习团队。

如何学习?《刻意练习》《认知天性》《考试脑科学》有所介绍

1.7 阅读材料

在这里插入图片描述

第2章 模型评估与选择

2.1 经验误差与过拟合

error rate: E = a/m;
accuracy: = 1 - E
error(误差)
在这里插入图片描述

training error——empirical error
generalization error
overfitting(过拟合): 学习器把训练样本学得“太好”,且将一些的训练样本自身的特点“当作”所有潜在样本具有的一般性质,导致generalization性能下降的现象。亦称“过配”。
underfitting(欠拟合):亦称“欠配”。

underfitting比较容易克服,overfitting的则很麻烦,且overfitting的问题无法避免,只能“缓解”。
在这里插入图片描述

model selection
理想的解决方案,即选择generaliztion error最小的model.

2.2 评估方法

在这里插入图片描述
在这里插入图片描述

2.2.1留出法(hold-out)

hold-out: 直接将数据集D划分为两个互斥的集合,训练集S和测试集T。
在这里插入图片描述
“分层采样(stratified sampling)”:保留类别比例的采样方式。

保真性(fidelity)。
解决留出法的窘境问题,常见做法是将大约2/3 ~ 4/5的样本用于训练,剩余样本用于测试。

2.2.2 交叉验证法(cross validation)

cross validation: 将数据集D划分为k个大小相似的互斥子集。每个子集都尽可能保持数据分布的一致性,即从D中通过分层采样得到。

cross validation通常被称为“k折交叉验证(k-fold cross validation)”。
在这里插入图片描述
在这里插入图片描述
留一法(Leave-One-Out,简称LOO):假定数据集D中包含m个样本,若令k = m,则得到cross validation的一个特例。
LOO优点:评估结果往往被认为比较准确;LOO缺点:数据集比较大时,训练的计算开销将会非常大,且NTF定理对实验评估方法同样适用。

2.2.3 自助法(bootstrapping)

bootstrapping: 是一个比较好的解决方案,它直接以bootstrap sampling为基础。

D’作为训练集,D \ D’用作测试集。
“\”表示集合减法。
“out-of-bag estimate(包外估计)”。

bootstrapping在数据集较小、难以有效划分训练/测试集时很有用。其产生训练集的方式对集成学习等方法有很大帮助。但bootstrapping会引入估计偏差。故hold-out和cross validation在初始数据量足够时,更常用一些。

2.2.4 调参与最终模型

大多数学习算法都需设定某些parameter,parameter配置不同,学得model的性能往往有显著差别。

“参数调节”简称“调参(parameter tuning)”。
在这里插入图片描述

2.3 性能度量(performance measure)

model的"好坏"是相对的,不仅取决于algorithm和data,还决定于任务需求。

2.3.1 错误率与精度

2.3.2 查准率(precision)、查全率(recall)与F1

TP + FP + TN + FN = 样例总数

confusion matrix(混淆矩阵)
在这里插入图片描述
在这里插入图片描述
Precision: 给一批定好瓜和坏瓜,能分辨好瓜的能力。
Recall:将好瓜挑全的能力,FN属于把好瓜判为坏瓜,进而将其放回瓜堆。

在这里插入图片描述
“平衡点(Break-Event Point,简称BEP)”:是Precision = Recall时的取值。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.3 ROC与AUC

threshold(分类阈值)
cut point(截断点)
ROC(Receiver Operating Characteristic)曲线,源于“二战”中检测检测敌机的雷达信号分析技术。
AUC(Area Under ROC Curve)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.3.4 代价敏感错误率与代价曲线

unequal cost(非均等代价): 为权衡不同类型错误所造成的不同损失,可为错误赋予“unequal cost”。
cost matrix
total cost
cost-snesitive

在这里插入图片描述

2.4 比较检验

本小节涉及的基础知识为《概率论与数理统计》。

hypothesis test

二项(binomial)分布
binomial test(二项检验)
confidence(置信度)

在这里插入图片描述

2.4.1 假设检验

2.4.2 交叉验证 t 检验

2.4.3 McNemar检验

2.4.4 Friedman检验与Nemenyi后续检验

F检验

2.5 偏差与方差

偏差-方差分解(bias-variance decomposition)
泛化误差可分解为偏差、方差与噪声之和。

bias-variance dilemma(偏差-方差窘境)

在这里插入图片描述

2.6 阅读材料

第3章 线性模型

第4章 决策树

第5章 神经网络

第6章 支持向量机

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值