LCP 13. 寻宝(Leetcode每日一题-2020.07.29)--抄答案。。。。

这道LeetCode每日一题讲述了在一个包含机关、石堆和障碍物的迷宫中,从起点到宝藏的最短步数。玩家需要触发所有机关并搬动石头来开启机关,如果无法到达宝藏则返回-1。文章通过示例介绍了问题的解决思路和约束条件。
摘要由CSDN通过智能技术生成

Problem

我们得到了一副藏宝图,藏宝图显示,在一个迷宫中存在着未被世人发现的宝藏。

迷宫是一个二维矩阵,用一个字符串数组表示。它标识了唯一的入口(用 ‘S’ 表示),和唯一的宝藏地点(用 ‘T’ 表示)。但是,宝藏被一些隐蔽的机关保护了起来。在地图上有若干个机关点(用 ‘M’ 表示),只有所有机关均被触发,才可以拿到宝藏。

要保持机关的触发,需要把一个重石放在上面。迷宫中有若干个石堆(用 ‘O’ 表示),每个石堆都有无限个足够触发机关的重石。但是由于石头太重,我们一次只能搬一个石头到指定地点。

迷宫中同样有一些墙壁(用 ‘#’ 表示),我们不能走入墙壁。剩余的都是可随意通行的点(用 ‘.’ 表示)。石堆、机关、起点和终点(无论是否能拿到宝藏)也是可以通行的。

我们每步可以选择向上/向下/向左/向右移动一格,并且不能移出迷宫。搬起石头和放下石头不算步数。那么,从起点开始,我们最少需要多少步才能最后拿到宝藏呢?如果无法拿到宝藏,返回 -1 。

Example1

输入: [“S#O”, “M…”, “M.T”]
输出:16
解释:最优路线为: S->O, cost = 4, 去搬石头 O->第二行的M, cost = 3, M机关触发 第二行的M->O, cost = 3, 我们需要继续回去 O 搬石头。 O->第三行的M, cost = 4, 此时所有机关均触发 第三行的M->T, cost = 2,去T点拿宝藏。 总步数为16。

Constraints

  • 1 <= maze.length <= 100
  • 1 <= maze[i].length <= 100
  • maze[i].length == maze[j].length
  • S 和 T 有且只有一个
  • 0 <= M的数量 <= 16
  • 0 <= O的数量 <= 40,题目保证当迷宫中存在 M 时,一定存在至少一个 O 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/xun-bao
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

Example2

输入: [“S#O”, “M.#”, “M.T”]
输出:-1
解释:我们无法搬到石头触发机关

Example3

输入: [“S#O”, “M.T”, “M…”]
输出:17
解释:注意终点也是可以通行的。

Solution

class Solution {
public:
    int dx[4] = {1, -1, 0, 0};
    int dy[4] = {0, 0, 1, -1};
    int n, m;

    bool inBound(int x, int y) {
        return x >= 0 && x < n && y >= 0 && y < m;
    }

    vector<vector<int>> bfs(int x, int y, vector<string>& maze) {
        vector<vector<int>> ret(n, vector<int>(m, -1));
        ret[x][y] = 0;
        queue<pair<int, int>> Q;
        Q.push({x, y});
        while (!Q.empty()) {
            auto p = Q.front();
            Q.pop();
            int x = p.first, y = p.second;
            for (int k = 0; k < 4; k++) {
                int nx = x + dx[k], ny = y + dy[k];
                if (inBound(nx, ny) && maze[nx][ny] != '#' && ret[nx][ny] == -1) {
                    ret[nx][ny] = ret[x][y] + 1;
                    Q.push({nx, ny});
                }
            }
        }
        return ret;
    }

    int minimalSteps(vector<string>& maze) {
        n = maze.size(), m = maze[0].size();
        // 机关 & 石头
        vector<pair<int, int>> buttons, stones;
        // 起点 & 终点
        int sx, sy, tx, ty;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (maze[i][j] == 'M') {
                    buttons.push_back({i, j});
                }
                if (maze[i][j] == 'O') {
                    stones.push_back({i, j});
                }
                if (maze[i][j] == 'S') {
                    sx = i, sy = j;
                }
                if (maze[i][j] == 'T') {
                    tx = i, ty = j;
                }
            }
        }
        int nb = buttons.size();
        int ns = stones.size();
        vector<vector<int>> start_dist = bfs(sx, sy, maze);

        // 边界情况:没有机关
        if (nb == 0) {
            return start_dist[tx][ty];
        }
        // 从某个机关到其他机关 / 起点与终点的最短距离。
        vector<vector<int>> dist(nb, vector<int>(nb + 2, -1));
        // 中间结果
        vector<vector<vector<int>>> dd(nb);
        for (int i = 0; i < nb; i++) {
            vector<vector<int>> d = bfs(buttons[i].first, buttons[i].second, maze);
            dd[i] = d;
            // 从某个点到终点不需要拿石头
            dist[i][nb + 1] = d[tx][ty];
        }

        for (int i = 0; i < nb; i++) {
            int tmp = -1;
            for (int k = 0; k < ns; k++) {
                int mid_x = stones[k].first, mid_y = stones[k].second;
                if (dd[i][mid_x][mid_y] != -1 && start_dist[mid_x][mid_y] != -1) {
                    if (tmp == -1 || tmp > dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y]) {
                        tmp = dd[i][mid_x][mid_y] + start_dist[mid_x][mid_y];
                    }
                }
            }
            dist[i][nb] = tmp;
            for (int j = i + 1; j < nb; j++) {
                int mn = -1;
                for (int k = 0; k < ns; k++) {
                    int mid_x = stones[k].first, mid_y = stones[k].second;
                    if (dd[i][mid_x][mid_y] != -1 && dd[j][mid_x][mid_y] != -1) {
                        if (mn == -1 || mn > dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y]) {
                            mn = dd[i][mid_x][mid_y] + dd[j][mid_x][mid_y];
                        }
                    }
                }
                dist[i][j] = mn;
                dist[j][i] = mn;
            }
        }

        // 无法达成的情形
        for (int i = 0; i < nb; i++) {
            if (dist[i][nb] == -1 || dist[i][nb + 1] == -1) return -1;
        }
        
        // dp 数组, -1 代表没有遍历到
        vector<vector<int>> dp(1 << nb, vector<int>(nb, -1));
        for (int i = 0; i < nb; i++) {
            dp[1 << i][i] = dist[i][nb];
        }
        
        // 由于更新的状态都比未更新的大,所以直接从小到大遍历即可
        for (int mask = 1; mask < (1 << nb); mask++) {
            for (int i = 0; i < nb; i++) {
                // 当前 dp 是合法的
                if (mask & (1 << i)) {
                    for (int j = 0; j < nb; j++) {
                        // j 不在 mask 里
                        if (!(mask & (1 << j))) {
                            int next = mask | (1 << j);
                            if (dp[next][j] == -1 || dp[next][j] > dp[mask][i] + dist[i][j]) {
                                dp[next][j] = dp[mask][i] + dist[i][j];
                            }
                        }
                    }
                }
            }
        }

        int ret = -1;
        int final_mask = (1 << nb) - 1;
        for (int i = 0; i < nb; i++) {
            if (ret == -1 || ret > dp[final_mask][i] + dist[i][nb + 1]) {
                ret = dp[final_mask][i] + dist[i][nb + 1];
            }
        }

        return ret;
    }
};

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值