在本地运行Hugging Face模型:借助HuggingFacePipeline轻松搞定

# 在本地运行Hugging Face模型:借助HuggingFacePipeline轻松搞定

## 引言
Hugging Face Model Hub是一个丰富的资源库,提供了超过12万个模型、2万个数据集和5万个示例应用(Spaces)。这些资源不仅是开源的,而且非常适合开发者们在机器学习领域进行合作和构建。本文将讨论如何使用HuggingFacePipeline类在本地运行这些模型,帮助您更好地理解和应用这些强大的工具。

## 主要内容

### 安装必要的软件包
在开始之前,确保您安装了`transformers`和`pytorch`包。此外,您还可以安装`xformer`以实现更高效的内存使用。

```bash
%pip install --upgrade --quiet transformers

加载模型

在本地使用模型,您可以通过from_model_id方法指定模型参数来加载。

from langchain_huggingface.llms import HuggingFacePipeline

hf = HuggingFacePipeline.from_model_id(
    model_id="gpt2",
    task="text-generation",
    pipeline_kwargs={
   "max_new_tokens": 10}
)

或者,通过传入一个现有的transformers管道来加载模型。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值