探索PGVector:使用Postgres实现LangChain向量存储

引言

向量存储在现代机器学习和信息检索中占有重要地位。本文将带你了解如何使用PGVector与Postgres作为后端,借助pgvector扩展,实现LangChain的向量存储抽象。

主要内容

1. 环境设置

首先,我们需要安装相关包并启动Postgres容器:

pip install -qU langchain_postgres

# 启动带有pgvector扩展的Postgres容器
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16

2. 创建向量存储

在创建向量存储之前,您需要设置OpenAI或HuggingFace的嵌入模型。这里举例使用OpenAI的嵌入模型:

import getpass
from langchain_openai import OpenAIEmbeddings

os.environ["OPENAI_API_KEY"] = getpass.getpass(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值