引言
向量存储在现代机器学习和信息检索中占有重要地位。本文将带你了解如何使用PGVector
与Postgres作为后端,借助pgvector
扩展,实现LangChain的向量存储抽象。
主要内容
1. 环境设置
首先,我们需要安装相关包并启动Postgres容器:
pip install -qU langchain_postgres
# 启动带有pgvector扩展的Postgres容器
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16
2. 创建向量存储
在创建向量存储之前,您需要设置OpenAI或HuggingFace的嵌入模型。这里举例使用OpenAI的嵌入模型:
import getpass
from langchain_openai import OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = getpass.getpass(