昇思25天学习打卡营第5天|数据变换 Transforms

前言

  非常感谢华为昇思大模型平台和CSDN邀请体验昇思大模型!从今天起,笔者将以打卡的方式,将原文搬运和个人思考结合,分享25天的学习内容与成果。为了提升文章质量和阅读体验,笔者会将思考部分放在最后,供大家探索讨论。同时也欢迎各位领取算力,免费体验昇思大模型

数据变换 Transforms

通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。

%%capture captured_output
# 实验环境已经预装了mindspore==2.3.0rc1,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

Common Transforms

mindspore.dataset.transforms模块支持一系列通用Transforms。这里我们以Compose为例,介绍其使用方式。

Compose

Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。

# Download data from open datasets

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)#使用URL的方式下载MNIST数据集并解压缩

train_dataset = MnistDataset('MNIST_Data/train')#读取MNIST数据集的训练集部分train_dataset

在这里插入图片描述

image, label = next(train_dataset.create_tuple_iterator())#从训练集获取第一个批次的数据
print(image.shape)	#输出图像形状,确定维度(H, W, C)为(28, 28, 1)

在这里插入图片描述

composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),#将图像像素值从0-255的范围缩放到0-1之间
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),#将图像数据标准化和归一化
        vision.HWC2CHW()#改变维度顺序
    ]
)
train_dataset = train_dataset.map(composed, 'image')#将composed变换应用到训练数据集
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)#从训练数据集中获取第一个批次的图像数据的具体形状

在这里插入图片描述
更多通用Transforms详见mindspore.dataset.transforms

Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了RescaleNormalizeHWC2CHW变换。下面对其进行详述。

Rescale

Rescale变换用于调整图像像素值的大小,包括两个参数:

  • rescale:缩放因子。
  • shift:平移因子。

图像的每个像素将根据这两个参数进行调整,输出的像素值为 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputirescale+shift

这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。

random_np = np.random.randint(0, 255, (48, 48), np.uint8)	
random_image = Image.fromarray(random_np)					#随机生成48*48尺寸的,值在0-255之间的图像
print(random_np)											#输出图像

在这里插入图片描述
为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。

rescale = vision.Rescale(1.0 / 255.0, 0)			
rescaled_image = rescale(random_image)				#将图像像素值从0-255的范围缩放到0-1之间
print(rescaled_image)

在这里插入图片描述
可以看到,使用Rescale后的每个像素值都进行了缩放。

Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

  • mean:图像每个通道的均值。
  • std:图像每个通道的标准差。
  • is_hwc:bool值,输入图像的格式。True为(height, width, channel),False为(channel, height, width)。

图像的每个通道将根据meanstd进行调整,计算公式为 o u t p u t c = i n p u t c − m e a n c s t d c output_{c} = \frac{input_{c} - mean_{c}}{std_{c}} outputc=stdcinputcmeanc,其中 c c c代表通道索引。

normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))		#通过图像的均值和标准差将输入图像归一化
normalized_image = normalize(rescaled_image)
print(normalized_image)

在这里插入图片描述

HWC2CHW

HWC2CHW变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。

这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)				#调整图像从(H, W, C)变成(C, H, W)
print(hwc_image.shape, chw_image.shape)		

在这里插入图片描述
更多Vision Transforms详见mindspore.dataset.vision

Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。

首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。

texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')

PythonTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的PythonTokenizer举例,此Tokenizer允许用户自由实现分词策略。随后我们利用map操作将此分词器应用到输入的文本中,对其进行分词。

def my_tokenizer(content):
    return content.split()

test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))					#将句子分隔成单词,输出句子Tensor的类型

在这里插入图片描述

Lookup

Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。

vocab = text.Vocab.from_dataset(test_dataset)	#从数据集生成词表

获得词表后我们可以使用vocab方法查看词表。

print(vocab.vocab())

在这里插入图片描述
生成词表后,可以配合map方法进行词表映射变换,将Token转为Index。

test_dataset = test_dataset.map(text.Lookup(vocab))	#使用map完成词表的映射,将Token转换成Index
print(next(test_dataset.create_tuple_iterator()))

在这里插入图片描述
更多Text Transforms详见mindspore.dataset.text

Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)#非混洗方式生成数据集名为data,内容为[1, 2, 3]
test_dataset = test_dataset.map(lambda x: x * 2)			#将数据集中的每个数据*2
print(list(test_dataset.create_tuple_iterator()))

在这里插入图片描述
可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))#将数据集中的每个数据求平方再加2
print(list(test_dataset.create_tuple_iterator()))

在这里插入图片描述

个人任务打卡(读者请忽略)

在这里插入图片描述

个人理解与总结

本章节展示了昇思大模型对于数据变换Transforms的用法以及实际代码。具体而言,昇思大模型的数据变换操作包括普通变换(Common Transforms)、视觉变换(Vision Transforms)、文本变换(Text Transforms)和Lambda变换(Lambda Transforms)。笔者个人的研究方向为CV,所以常见在深度学习代码中经常使用到视觉变换中完成的功能,包括Rescale调整图像像素值的大小、Normalize使图像归一化和HWC2CHW转换图像格式(其中还可能引入BHWC转为BCHW)。这对即将在昇思大模型研究CV方向提供了良好的代码基础。

  • 13
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knight_V_Schumacher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值