混合背包二进制优化(伪万能背包模板)

5 篇文章 0 订阅
这篇博客介绍了如何运用二进制优化方法解决背包问题,特别是针对数据量大的混合背包问题。作者通过将多重背包转化为0-1背包,并处理无限背包情况,实现了高效的算法模板。代码示例展示了如何将物品重量拆分成二进制组合,从而降低时间复杂度。
摘要由CSDN通过智能技术生成

今天在准备背包问题的算法模板时,突然想到上学期遗留下的一道混合背包问题,当时刚接触c语言,遇到这种题自然是一筹莫展,写的背包不是超时就是超空间,也有写过二进制的优化,但都以失败告终,如今看来,此题便是不攻自破了,顺便把它写成了万能的背包模板。
题目如下:
在这里插入图片描述
该题因为数据量较大,要用到优化来解决超时的问题,我选择了二进制优化,把混合背包转化成0-1背包问题。
二进制优化的原理十分简单,就是通过二进制拼出自然数的方法将一个多重背包拆成几个0-1背包,例如,7可以拆成1,2,4三个数,这三个数能拼出1-7的所有数,由此便把一个多重背包转化成了多个0-1背包,如果数不能刚好被二进制拼出,那就额外加一个余数的背包就行了,例如6可拆成1,2,3,这三个数能拼出1-6的所有数。
由于该题还有无限背包的混合,只要将它转化为总和质量不超过可承载质量的一个多重背包即可。
代码如下:

#include<bits/stdc++.h>
using namespace std;
int dp[10005];

struct node{
	int c;
	int w;
}bag[1009];

int main() {
	int n,m;
	while(cin >> n >> m){
		memset(dp,0,sizeof dp);
		int s=0;
		for (int i = 0; i < n; ++i) {
	        int c1,w1,k1;
	        cin>>c1>>w1>>k1;
	        if(k1==0){
				k1=m/c1;
			}
			int tem=1;
			while(k1-tem>=0){
				bag[s].c=c1*tem;
				bag[s++].w=tem*w1;				
				k1=k1-tem;
				tem=tem<<1;
			}
			if(k1>0){
				bag[s].c=c1*k1;
				bag[s++].w=k1*w1;				
			}
		}
	    for(int i=0;i<s;++i){
			for(int j=m;j>=bag[i].c;--j){
				dp[j]=max(dp[j],dp[j-bag[i].c]+bag[i].w);
			}
		}
		cout<<dp[m]<<endl;		
	}
	return 0;
}

这样就能解各种没有其他约束条件的背包问题了时间复杂度一般来说还较低。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

某六十九岁合法萝莉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值