单调队列优化dp和stl双头队列(deque)的使用

10 篇文章 0 订阅
5 篇文章 0 订阅

例题:最大子序和
题目大意:从长为 n n n的序列中找到长度不大于 m m m的连续子串,使其序列和最大。
解法:该题可使用单调队列优化 d p dp dp求解,首先,求出序列的前缀和,然后维护一个长度不大于 m m m的双头队列,并且保持其是一个单调递增的队列,每次只需要以当前的前缀和与队头的前缀和相减就可以了,因为子序列和为前缀和 S [ i ] − S [ j ] ( j < i , j > = i − m ) S[i] - S[j](j<i,j>=i-m) S[i]S[j](j<i,j>=im)因此,我们要保证 S [ j ] S[j] S[j]越小越好,因此我们只要保留一个单调递增的序列就可以保持队头是符合要求的一个最小前缀和了。
代码实现(deque):

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define x first
#define y second
const int N = 300010,M = 20;
const int mod = 1e9 + 7;
const double eps = 1e-6;
typedef pair<double,double>pdd;
 
int n,m;
deque<int>q;
ll s[N];


int main(){
    cin>>n>>m;
    for(int i=1;i<=n;++i){
		cin>>s[i];
		s[i] += s[i-1];
	}
	 
	ll res = INT_MIN;
	q.push_back(0);
	for(int i=1;i<=n;++i){
		if(i - q.front() > m) q.pop_front(); //单调队列 
		res = max(res,s[i] - s[q.front()]);
		while(!q.empty() && s[q.back()] >= s[i]) q.pop_back();
		q.push_back(i);
	}
	cout<<res<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

某六十九岁合法萝莉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值