莫比乌斯筛和莫比乌斯反演证明

自己推了一下莫比乌斯反演
这种公式类的还是需要自己推过,但以免遗忘,特写此文
莫比乌斯函数求法(线性筛):

void init(){
	mu[1] = 1;
	for (int i=2;i<maxm;++i){
		if(!st[i]) prime[cnt++] = i,mu[i] = -1;
		for(int j = 0;prime[j] * i<maxm;++j){
			st[prime[j]*i] = true;
			if (i%prime[j] == 0)break;
			mu[prime[j]*i] = -mu[i];
		}
	}
	for(int i=1;i<maxm;++i) sum[i] = sum[i-1] +mu[i];
}

当满足 F ( n ) F(n) F(n) = = = ∑ d ∣ n f ( d ) \sum_{d|n}f(d) dnf(d)
莫比乌斯反演公式:
f ( n ) f(n) f(n) = = = ∑ d ∣ n d ( n ) F ( n / d ) \sum_{d|n}d(n)F(n/d) dnd(n)F(n/d)
F ( n / d ) F(n/d) F(n/d)用原公式代替得:
∑ d ∣ n d ( n ) F ( n / d ) \sum_{d|n}d(n)F(n/d) dnd(n)F(n/d) = = = ∑ d ∣ n u ( d ) \sum_{d|n}u(d) dnu(d) ∑ k ∣ n / d f ( k ) \sum_{k|n/d}f(k) kn/df(k)
由于 k k k d d d都是 n n n的因子(这个可以自己代个常数n,一目了然): ∑ d ∣ n d ( n ) F ( n / d ) \sum_{d|n}d(n)F(n/d) dnd(n)F(n/d) = = = ∑ k / n f ( k ) \sum_{k/n}f(k) k/nf(k) ∑ d ∣ n / k u ( d ) \sum_{d|n/k}u(d) dn/ku(d)
最后由于莫比乌斯函数的性质,只有当 n / k = 1 n/k=1 n/k=1 ∑ d ∣ n / k u ( d ) \sum_{d|n/k}u(d) dn/ku(d) 才为1,其他都为0,所以 n = k n=k n=k ∑ d ∣ n d ( n ) F ( n / d ) \sum_{d|n}d(n)F(n/d) dnd(n)F(n/d) = = = ∑ 1 f ( n ) \sum_{1}f(n) 1f(n) = = = f ( n ) f(n) f(n)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

某六十九岁合法萝莉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值