本章将在一元函数微分学的基础上,讨论多元函数的微分法及其应用。——高等数学同济版
目录
- 习题9-1 多元函数的基本概念
-
- 6.求下列各极限:
-
- (3) lim ( x , y ) → ( 0 , 0 ) 2 − x y + 4 x y ; \lim\limits_{(x,y)\to(0,0)}\cfrac{2-\sqrt{xy+4}}{xy}; (x,y)→(0,0)limxy2−xy+4;
- (4) lim ( x , y ) → ( 0 , 0 ) x y 2 − e x y − 1 ; \lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{\sqrt{2-e^{xy}}-1}; (x,y)→(0,0)lim2−exy−1xy;
- (6) lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) e x 2 y 2 . \lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}. (x,y)→(0,0)lim(x2+y2)ex2y21−cos(x2+y2).
- 9.证明 lim ( x , y ) → ( 0 , 0 ) = x y x 2 + y 2 . \lim\limits_{(x,y)\to(0,0)}=\cfrac{xy}{\sqrt{x^2+y^2}}. (x,y)→(0,0)lim=x2+y2xy.
- 10.设 F ( x , y ) = f ( x ) F(x,y)=f(x) F(x,y)=f(x), f ( x ) f(x) f(x)在 x 0 x_0 x0处连续,证明:对任意 y 0 ∈ R y_0\in\bold{R} y0∈R, F ( x , y ) F(x,y) F(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续。
- 习题9-2 偏导数
- 习题9-3 全微分
- 习题9-4 多元复合函数的求导法则
- 习题9-5 隐函数的求导公式
- 习题9-6 多元函数微分学的几何应用
- 习题9-7 方向导数与梯度
- 习题9-8 多元函数的极值及其求法
- 习题9-9 二元函数的泰勒公式
- 总习题九
-
- 1.在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:
(3) f ( x , y ) f(x,y) f(x,y)的偏导数 ∂ z ∂ x \cfrac{\partial z}{\partial x} ∂x∂z及 ∂ z ∂ y \cfrac{\partial z}{\partial y} ∂y∂z在点 ( x , y ) (x,y) (x,y)存在且连续是 f ( x , y ) f(x,y) f(x,y)在该点可微分的______条件;
(4)函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个二阶混合偏导数 ∂ 2 z ∂ x ∂ y \cfrac{\partial^2z}{\partial x\partial y} ∂x∂y∂2z及 ∂ 2 z ∂ y ∂ x \cfrac{\partial^2z}{\partial y\partial x} ∂y∂x∂2z在区域 D D D内连续是这两个二阶混合偏导数在 D D D内相等的______条件。 - 12.设 x = e u cos v x=e^u\cos v x=eucosv, y = e u sin v y=e^u\sin v y=eusinv, z = u v z=uv z=uv,试求 ∂ z ∂ x \cfrac{\partial z}{\partial x} ∂x∂z和 ∂ z ∂ y \cfrac{\partial z}{\partial y} ∂y∂z。
- 16.求函数 u = x 2 + y 2 + z 2 u=x^2+y^2+z^2 u=x2+y2+z2在椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上点处沿 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)外法线方向的方向导数。
- 17.求平面 x 3 + y 4 + z 5 = 1 \cfrac{x}{3}+\cfrac{y}{4}+\cfrac{z}{5}=1 3x+4y+5z=1和柱面 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1的交线上与 x O y xOy xOy平面距离最短的点。
- 18.在第一卦线内作椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的切平面,使该切平面与三坐标面所围成的四面体的体积最小。求这切平面的切点,并求此最小体积。
- 1.在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:
- 写在最后
习题9-1 多元函数的基本概念
本节主要介绍了多元函数的基本概念。
6.求下列各极限:
(3) lim ( x , y ) → ( 0 , 0 ) 2 − x y + 4 x y ; \lim\limits_{(x,y)\to(0,0)}\cfrac{2-\sqrt{xy+4}}{xy}; (x,y)→(0,0)limxy2−xy+4;
解
lim ( x , y ) → ( 0 , 0 ) 2 − x y + 4 x y = lim ( x , y ) → ( 0 , 0 ) 4 − ( x y + 4 ) x y ( 2 + x y + 4 ) = lim ( x , y ) → ( 0 , 0 ) − 1 2 + x y + 4 = − 1 4 . \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{2-\sqrt{xy+4}}{xy}&=\lim\limits_{(x,y)\to(0,0)}\cfrac{4-(xy+4)}{xy(2+\sqrt{xy+4})}\\ &=\lim\limits_{(x,y)\to(0,0)}\cfrac{-1}{2+\sqrt{xy+4}}=-\cfrac{1}{4}. \end{aligned} (x,y)→(0,0)limxy2−xy+4=(x,y)→(0,0)limxy(2+xy+4)4−(xy+4)=(x,y)→(0,0)lim2+xy+4−1=−41.
(这道题主要利用了分子有理化的方法求解)
(4) lim ( x , y ) → ( 0 , 0 ) x y 2 − e x y − 1 ; \lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{\sqrt{2-e^{xy}}-1}; (x,y)→(0,0)lim2−exy−1xy;
解
lim ( x , y ) → ( 0 , 0 ) x y 2 − e x y − 1 = lim ( x , y ) → ( 0 , 0 ) x y 1 − e x y ⋅ ( 2 − e x y + 1 ) = − 1 ⋅ 2 = − 2 \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{\sqrt{2-e^{xy}}-1}=\lim\limits_{(x,y)\to(0,0)}\cfrac{xy}{1-e^{xy}}\cdot(\sqrt{2-e^{xy}}+1)=-1\cdot2=-2 \end{aligned} (x,y)→(0,0)lim2−exy−1xy=(x,y)→(0,0)lim1−exyxy⋅(2−exy+1)=−1⋅2=−2
(这道题主要利用了分母有理化的方法求解)
(6) lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) e x 2 y 2 . \lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}. (x,y)→(0,0)lim(x2+y2)ex2y21−cos(x2+y2).
解
lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) e x 2 y 2 = lim ( x , y ) → ( 0 , 0 ) 1 − cos ( x 2 + y 2 ) ( x 2 + y 2 ) 2 ⋅ x 2 + y 2 e x 2 y 2 = 1 2 ⋅ 0 = 0. \begin{aligned} \lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}&=\lim\limits_{(x,y)\to(0,0)}\cfrac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}\cdot\cfrac{x^2+y^2}{e^{x^2y^2}}\\ &=\cfrac{1}{2}\cdot0=0. \end{aligned} (x,y)→(0,0)lim(x2+y2)ex2y21−cos(x2+y2)=(x,y)→(0,0)lim(x2+y2)21−cos(x2+y2)⋅ex2y2x2+y2=21⋅0=0.
(本题主要利用了等价无穷小代换的方法求解,这部分内容见第一章第七节,传送门在这里)
9.证明 lim ( x , y ) → ( 0 , 0 ) = x y x 2 + y 2 . \lim\limits_{(x,y)\to(0,0)}=\cfrac{xy}{\sqrt{x^2+y^2}}. (x,y)→(0,0)lim=x2+y2xy.
证 因为
∣ x y x 2 + y 2 − 0 ∣ ⩽ 1 2 ( x 2 + y 2 ) x 2 + y 2 = 1 2 x 2 + y 2 . \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|\leqslant\cfrac{\cfrac{1}{2}(x^2+y^2)}{\sqrt{x^2+y^2}}=\cfrac{1}{2}\sqrt{x^2+y^2}. ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣⩽x2+y221(x2+y2)=21x2+y2.
要使 ∣ x y x 2 + y 2 − 0 ∣ < ε \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|<\varepsilon ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣<ε,只要 x 2 + y 2 < 2 ε \sqrt{x^2+y^2}<2\varepsilon x2+y2<2ε,所以 ∀ ε > 0 \forall\varepsilon>0 ∀ε>0,取 δ = 2 ε \delta=2\varepsilon δ=2ε,则当 0 < x 2 + y 2 < δ 0<\sqrt{x^2+y^2}<\delta 0<x2+y2<δ时,就有 ∣ x y x 2 + y 2 − 0 ∣ < ε \left|\cfrac{xy}{\sqrt{x^2+y^2}}-0\right|<\varepsilon ∣∣∣∣∣x2+y2xy−0∣∣∣∣∣<ε成立,即 lim ( x , y ) → ( 0 , 0 ) = x y x 2 + y 2 \lim\limits_{(x,y)\to(0,0)}=\cfrac{xy}{\sqrt{x^2+y^2}} (x,y)→(0,0)lim=x2+y2xy。(这道题主要利用了定义证明)
10.设 F ( x , y ) = f ( x ) F(x,y)=f(x) F(x,y)=f(x), f ( x ) f(x) f(x)在 x 0 x_0 x0处连续,证明:对任意 y 0 ∈ R y_0\in\bold{R} y0∈R, F ( x , y ) F(x,y) F(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续。
证 设 P 0 ( x 0 , y 0 ) ∈ R 2 P_0(x_0,y_0)\in\bold{R}^2 P0(x0,y0)∈R2,因为 f ( x ) f(x) f(x)在 x 0 x_0 x0处连续,所以 ∀ ε > 0 \forall\varepsilon>0 ∀ε>0, ∃ δ > 0 \exists\delta>0 ∃δ>0,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta ∣x−x0∣<δ时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon ∣f(x)−f(x0)∣<ε。从而,当 P ( x , y ) ∈ U ( x 0 , δ ) P(x,y)\in U(x_0,\delta) P(x,y)∈U(x0,δ)时, ∣ x − x 0 ∣ ⩽ ρ ( P , P 0 ) < δ |x-x_0|\leqslant\rho(P,P_0)<\delta ∣x−x0∣⩽ρ(P,P0)<δ,因而有
∣ F ( x , y ) − F ( x 0 , y 0 ) ∣ = ∣ f ( x ) − f ( x 0 ) ∣ < ε . |F(x,y)-F(x_0,y_0)|=|f(x)-f(x_0)|<\varepsilon. ∣F(x,y)−F(x0,y0)∣=∣f(x)−f(x0)∣<ε.
即 F ( x , y ) F(x,y) F(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续。(这道题主要利用了定义证明)
习题9-2 偏导数
本节主要介绍了偏导数的基本概念及计算方法。
习题9-3 全微分
本节主要介绍了全微分的基本概念及计算。
5.考虑二元函数 f ( x , y ) f(x,y) f(x,y)的下面四条性质:
(1) f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连续;
(2) f x ( x , y ) f_x(x,y) fx(x,y), f y ( x , y ) f_y(x,y) fy(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连续;
(3) f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)可微分;
(4) f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0), f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)存在。
若用“ P ⇒ Q P\rArr Q P⇒Q”表示可由性质 P P P推出性质 Q Q Q,则下列四个选项中正确的是( \quad ) ( A ) ( 2 ) ⇒ ( 3 ) ⇒ ( 1 ) ( B ) ( 3 ) ⇒ ( 2 ) ⇒ ( 1 ) ( C ) ( 3 ) ⇒ ( 4 ) ⇒ ( 1 ) ( D ) ( 3 ) ⇒ ( 1 ) ⇒ ( 4 ) \begin{aligned}&(A)(2)\rArr(3)\rArr(1)\\&(B)(3)\rArr(2)\rArr(1)\\&(C)(3)\rArr(4)\rArr(1)\\&(D)(3)\rArr(1)\rArr(4)\\\end{aligned} (A)(2)⇒(3)⇒(1)(B)(3)⇒(2)⇒(1)(C)(3)⇒(4)⇒(1)(D)(3)⇒(1)⇒(4)
解 由于二元函数偏导数存在且连续是二元函数可微分的充分条件,二元函数可微分必定可偏导,二元函数可微分必定连续,因此选项(A)正确。(这道题主要考察对于多元函数可微、可导、连续的理解)
习题9-4 多元复合函数的求导法则
本节要将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形。多元复合函数的求导法则在多元函数微分学中也起着重要作用。——高等数学同济版
本节主要介绍了多元复合函数的求导法则。
习题9-5 隐函数的求导公式
本节主要介绍了在多元函数的情况下对隐函数求导的方法。