1、人物背景
约瑟夫·傅里叶男爵(法语:Joseph Fourier,1768年3月21日-1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论与振动理论,傅里叶变换也以他命名。他被归功为温室效应的发现者。
1822年傅里叶提出了他在热流上的作品:《热的解析理论》(Théorie analytique de la chaleur)。他的推理的基础是牛顿冷却定律,即两相邻分子的热流和它们之间非常小的温度差成正比。56年后,于1878年,这本书被Freeman翻译与校正成英文版本。让·加斯东·达布又将这本书加以编辑校对,于1888年重新以法文出版。
这本著作有三个重要贡献,一个是纯粹的数学,另两个实质上是物理。在数学中,傅里叶声明,一个变数的任意函数,不论是否连续或不连续,都可展开为正弦函数的级数,而这正弦函数的参数为变数的倍数。虽然这个结果是不正确的,傅里叶正确地察觉,有些不连续函数是无穷级数的总和。这察觉是一个重大数学突破。约瑟夫·拉格朗日曾给予了这个(错误的)定理一些特别的例子,并暗示这是一般的方法,但他没有继续跟踪这题目。约翰·狄利克雷最先给出,在有限制条件下,对于这结果满意的示范。—-以上摘自《维基百科》
2、先说欧拉公式
欧拉公式: eiθ=cosθ+isinθ
欧拉公式(英语:Euler’s formula,又称尤拉公式)是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,对任意实数 x ,都存在
欧拉公式的推导如下:
利用泰勒公式将如下式子在 x0=0 出展开(方法不唯一):
ex=1+x+12!x2+13!x3+…
sinx=x−13!x3+15!x5+…
cosx=1−12!x3+14!x4+…
将 x=iθ 代入 ex 可得:
=1+iθ−θ22!−iθ33!+θ44!+iθ55!−θ66!−iθ77!+θ88!+…
=(1−θ22!+θ44!−θ66!+θ88!−… ) +i(θ−θ33!+θ55!−θ77!+…)=conθ+isinθ
由欧拉公式可得:
sinθ=eiθ−e−iθ2i
cosθ=eiθ+e−iθ2
当 θ=π的时候,代入欧拉公式得:
eiπ=conπ+isinπ=−1 ⇒ eiπ+1=0
上式即被称为“欧拉恒等式”,也被誉为“上帝公式”。
3、傅里叶级数
傅里叶变换公式如下所示:
f(w)=∫∞−∞F(t)e−iwtdt
f(t)=12π∫∞−∞F(w)eiwtdw
上式只是傅里叶变换公式诸多形式中的一种,在通信领域中,表示将时域信号转换为频域信号或者将频域信号转换为时域信号。
傅里叶原理表明:
任何连续测量的时序或信号,都可以表示为不同频率的正弦信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
傅里叶变换是一种线性的积分变换,哪种变换呢?就是一种从时间到频率的变换或者是相互转化。
一般可称函数 f(t) 为原函数,而称函数 F(w) 为傅里叶变换的象函数,原函数和象函数构成一个傅里叶变换对。
傅里叶变换通常还有其他形式的写法,仅仅是通过参数的简单代换得到,有兴趣的可以自己推导一下,比较简单。
为了得到以上的傅里叶变换公式,我们还需要一些额外的知识补充:
3.1 级数
什么是级数呢?级数的定义:在数学中,一个有穷或者无穷的序列 u0,u1,u2,u3,⋯ 的元素的形式和 S 称为级数。序列
3.2三角级数
定义:由三角函数组成的函数项级数,即所谓的三角级数。
而我们现在要考虑的是,如何把给定的函数展开成三角级数。我们知道正弦函数是一种常见而简单的周期函数。例如描述简谐震动的函数:
y=Asin(wt+φ)
就是以 2πw 为周期的正弦函数。其中 y 表示动点的位置,
具体地说,将周期为 T=2πw 的周期函数用一系列以 T 为周期的正弦函数
f(t)=A0+∑∞n=1