高斯滤波需要用到高斯滤波器,即卷积核。本博客用到的是3*3的卷积核,通过对原理剖析发现,高斯卷积核中的具体值仅和自身坐标有关系,与图像没有直接联系,故可以先计算卷积核,之后进行图像的高斯滤波。
算法步骤:
(1)根据公式,计算高斯卷积核内具体值,此处用到建立二维高斯卷积核,在编写过程中省去了系数部分(不知道为什么省去,无奈。。。),并且对公式做了小小的修改(根据CSDN其他大佬的算法操作),记得归一化;
(2)对输入图像进行灰度化处理;
(3)遍历灰度图像素点,对像素点邻域(和高斯卷积核一般大)进行高斯滤波。
代码如下:
import cv2 as cv
import math
import numpy as np
# 灰度化处理
def rgb2gray(img):
h=img.shape[0]
w=img.shape[1]
img1=np.zeros((h,w),np.uint8)
for i in range(h):
for j in range(w):
img1[i,j]=0.144*img[i,j,0]+0.587*img[i,j,1]+0.299*img[i,j,1]
return img1
# 计算高斯卷积核
def gausskernel(size):
sigma=1.0
gausskernel=np.zeros((size,size),np.float32)
for i in range (size):
for j in range (size):
norm=math.pow(i-1,2)+pow(j-1,2)
gausskernel[i,j]=math.exp(-norm/(2*math.pow(sigma,2))) # 求高斯卷积
sum=np.sum(gausskernel) # 求和
kernel=gausskernel/sum # 归一化
return kernel
# 高斯滤波
def gauss(img):
h=img.shape[0]
w=img.shape[1]
img1=np.zeros((h,w),np.uint8)
kernel=gausskernel(3) # 计算高斯卷积核
for i in range (1,h-1):
for j in range (1,w-1):
sum=0
for k in range(-1,2):
for l in range(-1,2):
sum+=img[i+k,j+l]*kernel[k+1,l+1] # 高斯滤波
img1[i,j]=sum
return img1
image = cv.imread("D:/Testdata/selina.png")
grayimage=rgb2gray(image)
gaussimage = gauss(grayimage)
cv.imshow("image",image)
cv.imshow("grayimage",grayimage)
cv.imshow("gaussimage",gaussimage)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果:
上图从左至右分别是原图像,灰度图,高斯滤波图。对清晰的图像滤波其结果会变模糊,实验结果符合理论依据。以上便是高斯滤波。