大津法(otsu算法)是基于全局的阈值分割算法,极易受到光照不均的干扰,使图像前景像素与背景像素分割不合理,达不到预期效果,故需要采用局部阈值分割的方法,本文采用以每列为局部,将每列进行一次otsu算法,求出列阈值,以此类推,直至遍历完所有的列。
代码如下:
import cv2 as cv
import numpy as np
# 转灰
def rgb2gray(img):
h=img.shape[0]
w=img.shape[1]
img1=np.zeros((h,w),np.uint8)
for i in range(h):
for j in range(w):
img1[i,j]=0.144*img[i,j,0]+0.587*img[i,j,1]+0.299*img[i,j,1]
return img1
# 二值化
def otsu(img):
h=img.shape[0]
w=img.shape[1]
otsuimg=np.zeros((h,w),np.uint8)
for i in range(w): # 遍历列
sigma=threshold=0 # 定义类间方差和最终阈值
histogram=np.zeros(256,np.int32) # 初始化各灰度级个数统计
probability=np.zeros(256,np.float32) # 初始化各灰度级概率分布
for j in range (h): # 遍历行,进行otsu算法
s=img[j,i]
histogram[s]+=1 # 统计灰度级中每个像素在整幅图像中的个数
for k in range (256):
probability[k]=histogram[k]/h # 统计每个灰度级占图像中的分布
for p in range (255):
w0 = w1 = 0 # 定义前景像素点和背景像素点灰度级占图像中的分布
fgs = bgs = 0 # 定义前景像素点灰度级总和and背景像素点灰度级总和
for q in range (256):
if q<=p: # 当前i为分割阈值
w0+=probability[q] # 前景像素点占整幅图像的比例累加
fgs+=q*probability[q] # 前景像素点的平均灰度
else:
w1+=probability[q] # 背景像素点占整幅图像的比例累加
bgs+=q*probability[q] # 背景像素点的平均灰度
u0=fgs/w0
u1=bgs/w1
g=w0*w1*(u0-u1)**2 # 类间方差
if g>=sigma:
sigma=g
threshold=p
for j in range (h): # 对某列的每一行进行二值化
if img[j,i]>threshold:
otsuimg[j,i]=255
else:
otsuimg[j,i]=0
return otsuimg
image = cv.imread("D:/Testdata/a.png")
grayimage = rgb2gray(image)
otsuimage = otsu(grayimage)
cv.imshow("image", image)
cv.imshow("otsuimage", otsuimage)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果:
为检验二值化效果,与otsu算法实验结果比较:
比较发现,这种基于otsu算法的局部二值化算法效果并不明显,所以算是一个失败品吧。