天池比赛——新闻文本分类比赛(零基础入门NLP)

1 赛题理解

1.1 比赛内容

对新闻文本的类别进行预测。比赛提供了包含14个新闻类别的文本数据,分为训练集和测试集A,B。训练集包含20万条新闻文本数据,测试集A,B分别包含5万条新闻文本数据。所有的新闻文本按照字符级别进行了匿名处理。

1.2 评价指标

评价指标为F1分数:
在这里插入图片描述
其中,precision表示分类的准确率,recall表示分类的召回率。

2 数据读取与分析

2.1 数据总体分布信息

以训练集为分析数据。总共包括20万条新闻以及对应的标签数据 。新闻标签共有14个类别,符号对应关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}。不同类别的数据分布如下图所示。
在这里插入图片描述

注意到类别的新闻数量差距较大,因此在使用模型进行分类预测时需要考虑到类别不平衡的问题。

对于这20万条新闻信息,新闻文本长度的统计结果如下所示:
count 200000.0
mean 907.2
std 996.0
min 2.0
25% 374.0
50% 676.0
75% 1131.0
max 57921.0
在这里插入图片描述
新闻文本平均长度为907个字符,大多数新闻文本的长度小于2000。

2.2 新闻字符分析

以下对新闻的字符信息进行分析。
新闻文本一共包含6869个字符,其分布情况如下所示:
count 6869.0
mean 26414.5
std 146124.1
min 1.0
25% 25.0
50% 459.0
75% 7258.0
max 7482224.0
其中数量最多的前20个字符如下图所示:
在这里插入图片描述
这数量最多的前20个字符在所有新闻中覆盖率为:
[0.989985, 0.959875, 0.988265, 0.811675, 0.882715, 0.835805, 0.881245, 0.793565, 0.815855, 0.846855, 0.780045, 0.88655, 0.778645, 0.81535, 0.676225, 0.81534, 0.796865, 0.724985, 0.619885, 0.82428]
可以看到3750,900和648这三个字符的覆盖率非常高,很有可能是标点符号。
如果讲3750, 900和648看作标点符号,则新闻文本句子数量的统计信息如下:
count 200000.0
mean 81.0
std 87.0
min 1.0
25% 29.0
50% 57.0
75% 103.0
max 3460.0
新闻文本平均由81条短句组成。
各个类别的新闻,最多的字符及其数量如下所示:
(0, 3750, 1267331, 0.0371),
(1, 3750, 1200686, 0.0373),
(2, 3750, 1458331, 0.0457),
(3, 3750, 774668, 0.0446),
(4, 3750, 360839, 0.037),
(5, 3750, 715740, 0.0524),
(6, 3750, 469540, 0.0376),
(7, 3750, 428638, 0.0419),
(8, 3750, 242367, 0.0434),
(9, 3750, 178783, 0.0365),
(10, 3750, 180259, 0.0402),
(11, 3750, 83834, 0.044),
(12, 3750, 87412, 0.0402),
(13, 3750, 33796, 0.0506)

3 基于机器学习的文本分类方法

文本分类问题可以使用机器学习方法来进行处理,而这里的关键步骤是将文本信息做向量化处理。自然语言处理中对文本信息进行向量化处理通常有两类方法,一类是单词离散式表示方法,包括对词向量进行one-hot处理后再使用词袋模型来表示文档、使用Ngram方法进行处理后使用词袋模型、使用TF-IDF方法表示文档等;另一类是单词分布式表示方法,包括使用word2vec方法对单词进行向量化再进行处理、使用语义环境词嵌入等方法表示单词再进行处理。这里先使用一些离散式单词表示方法对文档进行抽象后,再使用机器学习方法进行分类。

先使用词袋模型对文档进行处理,从而得到表示各个文档的词袋向量。再以其为输入,进行岭回归(Ridge regression,多元线性回归的特殊处理,损失函数中加入了权重系数的平方和损失项),在使用10000条文档信息作为输入的情况下,F1值最终达到了0.659。(模型对数据量敏感,计算时间严重依赖于模型的输入数据量,因此只选择了10000条数据进行处理,由于模型较为简单,其预测效果随着模型输入样本达到一定数量后基本不变化,预计对最终的实验结果影响不大。)

以上述词袋模型+岭回归为基准模型,以下将从两个方面进行改进。第一个方面是使用更优异的文档表示模型,如将词袋模型改为TF-IDF模型;另一个方面是选择更复杂的机器学习分类模型进行处理,如将岭回归模型改为集成数模型(LightGBM)。先介绍一下在第一个方面的改进效果。在使用TF-IDF方法后(同样只选择了10000条文本数据),模型预测的F1值达到了0.863。模型的预测效果出现了大幅度的提升,可见文档文本表示对模型的预测效果起着重要的作用。

4 基于Fasttext模型的新闻文本分类方法

前述几种机器学习模型在进行新闻文本分类时均可取得一定的预测效果。实际上,对于一般的机器学习模型而言,在小数据集上预测效果相对理想,然而由于模型的复杂度有限,随着数据集的增加,模型的预测效果却不能获得相应的提升。在这个方面,深度学习模型的优势便发挥了出来。这里我们先使用一种常用的基础的新闻文本分类方法——Fasttext模型来对新闻文本进行分类预测。

Fasttext方法是集中结合了前馈神经网络,字符级别的Ngram方法,和层次softmax方法的混合方法,是一种监督学习模型。其内容如下:
(1)字符级别的Ngram输入:
在这里插入图片描述
(2)神经网络架构
在这里插入图片描述
(3)层次Softmax方法

这里使用fasttext开源库对比赛数据进行了分类预测,借鉴了DataWhale天池网站上的代码,最后预测得到的F1分数为0.901。

5 基于Word2vec词向量的新闻文本分类方法

前面提到新闻文本分类任务可以拆分成两步来进行,第一步先将文本表示成词向量,第二步则使用机器学习或深度学习模型来对模型输入(词向量)进行分类处理。因为模型的提升也可以从这两个方面来着手。第一种思路是选择更为合适的词向量方法,比如从one-hot词向量转变成Word2vec词向量;而第二种思路则是选择更为有效的预测模型,比如从多元线性回归模型转成集成树模型(GBDT, Xgboost, lightgbm)。在第4节提到的Fasttext方法在这个任务中可以看成是将两个步骤融合起来,同时进行。

在本节中,我们尝试使用Word2Vec方法来生成词向量,再将这些词向量作为模型的输入,用于预测。这里重点参考了DataWhale公布的Word2Vec代码,语料选择的是本任务的语料。在DataWhale提供的参考代码中,模型似乎想要考虑不同类别新闻数量不一致可能带来的影响,使得各个类别的数据分布相对“均匀”,但不太确定这样做是否真的有效。另外模型似乎想要使用十折交叉验证法来进行训练和验证,因此制作了10个均等的数据集,但后续的代码又没真的进行十折交叉验证。感觉代码写的很乱。

以下描述一下使用Word2Vec方法得到词向量的思路,以及得到词向量后使用TextCNN来进行新闻文本分类的思路。Word2Vec 利用大量的语料信息将单词表示成词向量,在词向量的生成过程充分利用了语句中的上下文信息,从而使得词向量能够反映出语义信息。Word2Vec可以将one-hot编码的稀疏词向量表示成稠密编码的低维词向量,并使得词向量具有语义信息。有两种处理方式:CBOW (continuous bag of words ) 方法和Skipgrams方法。CBOW通过建立全连接神经网络,使用一段语句中的n-1个词预测剩下的一个词,从而获得该单词对应的隐向量,并将该向量作为词向量。CBOW通过建立全连接神经网络,使用一段语句中的n-1个词预测剩下的一个词,从而获得该单词对应的隐向量,并将该向量作为词向量。通过这样的处理后,就可以重复表示单词之间的关联关系,语义相近的单词,词向量也相近,从而可以很好地表示单词的语义信息。

通过Word2Vec得到词向量后,可以将文本各个词向量直接相加,从而抽象表示文本,再使用机器学习模型进行处理。这和第3小节中基于词袋模型的处理方法思路是类似的,但这样势必会遗漏文本中的大量信息。另一种思路则采取深度学习方法来进行分类处理。第一种方法可以使用循环神经网络(比如LSTM)来进行处理,这里可以通过单词补充的方式使得模型的输入是定长的。第二种方法可以采用更为复杂的特定模型来进行处理,比如TextCNN方法。还可以考虑引入注意力机制。这里重点介绍一下TextCNN方法。

TextCNN是2014年提出的模型。在对词向量输入进行处理时,使用了CNN。模型的结果如下:
在这里插入图片描述
对于句子,模型对输入向量先使用不同卷积核进行卷积操作,再经过两次拼接,最后预测类别。TextCNN方法之后将加以实现。

6 基于Bert预训练模型的新闻文本分类方法

前面提到使用Fasttext, Word2Vec等方法对单词进行分布式表示,再对训练好的词向量使用机器学习或者深度学习的方法来进行处理。然而,前述方法无法解决一词多义的问题,基于语义环境的词嵌入模型被提出来解决这一问题。这些模型包括ELMo, GPT, Bert等。它们往往需要使用极大的文本数据进行预训练,再在特定的任务数据集上进行微调,并用于相关任务的处理。在介绍Bert之前,需要介绍一下Transformer结构。
Transformer完全使用注意力机制的模型,里面的self attention的结构实现了并行计算的功能,其示意图如下。
在这里插入图片描述
Transformer包括encoder和decoder两个部分。Bert模型采用了双向的结构,其基本模型是图中的encoder部分。之后会对基于Bert预训练模型预测新闻文本类别的方法进行实现。

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值