乐鑫公司的ESP32芯片也可以AI加速啦!ESP-DSP 、ESP-NN和TensorFlow Lite Micro for Espressif Chipsets

乐鑫公司的ESP32芯片也可以AI加速啦!主要介绍三种,ESP-DSP是计算加速库

ESP-NN是深度学习加速库 

TensorFlow Lite Micro for Espressif Chipsets是AI人工智能框架

ESP-DSP

ESP-DSP is the official DSP library for all Espressif chips. The library contains optimized functions for ESP32ESP32-S3 and ESP32P4 chips.

GitHub - espressif/esp-dsp: DSP library for ESP-IDF

ESP-DSP库包括以下功能的实现:

ESP-NN

GitHub - espressif/esp-nn: Optimised Neural Network functions for Espressif chipsets

The library contains optimised NN (Neural Network) functions for various Espressif chips.

  • Supported platforms:

    • TensorFlow Lite Micro (TFLite Micro). Repo can be found here
  • Supported ESP chips include:

    • ESP32-S3 (Assembly versions optimised to benefit from vector instructions of ESP32-S3)
    • ESP32 (Generic optimisations)
    • ESP32-C3 (Generic optimisations)

 对S3的加速效果非常明显:

Kernelwise performance on ESP32-S3 chip

  • Numbers are ticks taken for kernel to execute
  • Chip config: 240MHz, SPI: QPI 80MHz, Data cache: 64KB
FunctionANSI COptimizedOpt RatioData infoMemory
elementwise_add312327716444.36size = 1615External
elementwise_mul122046309503.95size = 1615External
convolution464225946139810.06input(10,10), filter(64x1x1x64), pad(0,0), stride(1,1)External
convolution300032435786.9input(8,8), filter(16x1x1x16), pad(0,0), stride(1,1)External
convolution21068016436893.27input(10,10), filter(64x3x3x3), pad(0,0), stride(1,1)External
depthwise conv11928321919316.2input (18, 18), pad(0,0), stride(1,1) filter: 1x3x3x16External
depthwise conv16794063661024.59input (12, 12), pad(1,1), stride(1,1) filter: 8x5x5x4External
max pool485714767476.33input(16,16), filter (1x3x3x16)Internal
avg pool5414621605803.37input(16,16), filter (1x3x3x16)Internal
fully connected1229044392.77len: 265, ch = 3Internal
prelu (relu6)1831518569.87size, 1615Internal

可以看到 对ESP32-S3的加速非常明显,conv加速7倍左右,relu6加速10倍左右

TensorFlow Lite Micro for Espressif Chipsets

GitHub - espressif/esp-tflite-micro: TensorFlow Lite Micro for Espressif Chipsets

请介绍下:TensorFlow Lite Micro for Espressif Chipsets

TensorFlow Lite Micro for Espressif Chipsets 是一个针对乐鑫芯片集(Espressif)的系列芯片(例如 ESP32 和 ESP8266)的 TensorFlow Lite 微控制器框架。TensorFlow Lite 是一个由 TensorFlow 团队开发的库,旨在为移动设备或嵌入式设备提供机器学习能力。TensorFlow Lite Micro 是 TensorFlow Lite 的一个轻量级版本,专门为资源有限的设备(如微控制器)而设计。

特性:

  • 适用于微控制器的轻量级机器学习。

  • 支持神经网络推断,无需完整的操作系统。

  • 使用 Espressif 的开发板和芯片进行快速原型设计和测试。

使用 TensorFlow Lite Micro for Espressif Chipsets 的基本步骤:

  1. 安装必要的软件和工具,如 ESP-IDF 和 TensorFlow。

  2. 为目标硬件创建或转换一个 TensorFlow Lite 模型。

  3. 使用 ESP-IDF 创建一个项目,并集成 TensorFlow Lite Micro 库。

  4. 移植模型到目标硬件上,并进行编译和烧录。

在ESP-NN的加持下,速度飞快:

A quick summary of ESP-NN optimisations, measured on various chipsets:

TargetTFLite Micro Examplewithout ESP-NNwith ESP-NNCPU Freq
ESP32-P4Person Detection1395ms73ms360MHz
ESP32-S3Person Detection2300ms54ms240MHz
ESP32Person Detection4084ms380ms240MHz
ESP32-C3Person Detection3355ms426ms160MHz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值