Windows下建立Jupyter-lab 编程环境

Windows下建立Jupyter-lab 编程环境

方法1在python 虚拟环境下启动(失败)

首先激活环境

进入python的scripts目录,执行激活文件:

cd py311\Scripts
activate.bat

安装jupyter

pip install jupyter -U

启动jupyter-lab

进入工作目录,比如e:盘根目录,执行

jupyter-lab

但是用这种方法报错kernel没有找到,后面有详细的调试信息。

方法2 在Anaconda的PowerShell环境下启动

直接windows里快捷图标启动Anaconda的Powershell环境,shell里切换到e:盘,然后执行jupyter-lab启动,这样jupyter-lab就启动了。

很简单是不是?在顺利的情况下,windows下的程序就启动就是这么简单方便。

总结

在Windows下,最快启动jupyter-lab的方法,是安装Anaconda ,然后到Powershell环境里,切换到工作目录后,执行jupyter-lab启动。如果不考虑设置工作目录,使用默认目录的话,直接用启动菜单里的Jupyter notebook 图标启动即可。

前面之所以走了弯路,是因为在Linux、FreeBSD下习惯了创建虚拟python环境,在虚拟环境安装各种软件,而这次在windows下虚拟环境里的内核没有注册上来导致的。也就是既然选了Windows,也就别整那么多虚拟python环境了,换句话说,即使要整,直接多安装一个Anaconda软件就好了,这样肯定不会出问题。

调试

jupyter-lab启动后报错kernel没有找到

[E 2025-01-20 09:31:48.385 ServerApp] 500 PUT /api/contents/work/five/Untitled.ipynb?1737336708309 (02c6c05c95694255880b6c0209b701c3@::1) 73.21ms referer=http://localhost:8888/lab/tree/work/five/Untitled.ipynb
[W 2025-01-20 09:31:49.282 ServerApp] 404 GET /api/kernels/88bf4ba0-dd94-4d23-8b4f-a41826aa36f0?1737336709278 (::1): Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0
[W 2025-01-20 09:31:49.282 ServerApp] wrote error: 'Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0'
    Traceback (most recent call last):
      File "E:\py311\Lib\site-packages\tornado\web.py", line 1790, in _execute
        result = await result
                 ^^^^^^^^^^^^
      File "E:\py311\Lib\site-packages\jupyter_server\auth\decorator.py", line 73, in inner
        return await out
               ^^^^^^^^^
      File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\handlers.py", line 75, in get
        model = await ensure_async(km.kernel_model(kernel_id))
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\kernelmanager.py", line 508, in kernel_model
        self._check_kernel_id(kernel_id)
      File "E:\py311\Lib\site-packages\jupyter_server\services\kernels\kernelmanager.py", line 539, in _check_kernel_id
        raise web.HTTPError(404, "Kernel does not exist: %s" % kernel_id)
    tornado.web.HTTPError: HTTP 404: Not Found (Kernel does not exist: 88bf4ba0-dd94-4d23-8b4f-a41826aa36f0)

查找当前内核

Available kernels:
  python3    E:\py311\share\jupyter\kernels\python3

查看内核目录:

dir E:\py311\share\jupyter\kernels\python3
 驱动器 E 中的卷是 新加卷
 卷的序列号是 CA89-671D

 E:\py311\share\jupyter\kernels\python3 的目录

2025/01/20  09:29    <DIR>          .
2025/01/20  09:29    <DIR>          ..
2025/01/20  09:29               193 kernel.json
2025/01/20  09:29             1,084 logo-32x32.png
2025/01/20  09:29             2,180 logo-64x64.png
2025/01/20  09:29             9,605 logo-svg.svg
               4 个文件         13,062 字节
               2 个目录 845,146,857,472 可用字节

打开内核配置文件kernel.json

notepad  E:\py311\share\jupyter\kernels\python3\kernel.json

发现conda目录跟当前env环境目录不一致:

base environment : E:\Program Files\anaconda  (writable)

现在的解决方法有两个:要么在内核设置这里改一下,要么用conda env 里的环境激活一下。

我们先尝试第一种方法:

修改内核配置文件,将"python" 修改成"E:\py311\Scripts\python.exe" ,问题没有解决。

尝试第二种方法

直接进入mini conda mini 环境,然后执行jupyter-lab

结果还是报错

  File "E:\Program Files\anaconda\Lib\site-packages\prompt_toolkit\styles\from_dict.py", line 9, in <module>
    from collections import Mapping
ImportError: cannot import name 'Mapping' from 'collections' (E:\Program Files\anaconda\Lib\collections\__init__.py)
[W 2025-01-20 09:46:52.779 ServerApp] AsyncIOLoopKernelRestarter: restart failed
[W 2025-01-20 09:46:52.780 ServerApp] Kernel 2eb1e25f-9d86-4d77-aaa4-71e3b9403611 died, removing from map.
[W 2025-01-20 09:47:34.641 ServerApp] Timeout waiting for kernel_info reply from 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.644 ServerApp] 404 GET /api/kernels/2eb1e25f-9d86-4d77-aaa4-71e3b9403611/channels?session_id=b33f0ee6-c840-431e-bb42-43efd6fc6dd8 (::1): Kernel does not exist: 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.918 ServerApp] Timeout waiting for kernel_info reply from 2eb1e25f-9d86-4d77-aaa4-71e3b9403611
[W 2025-01-20 09:47:34.921 ServerApp] 404 GET /api/kernels/2eb1e25f-9d86-4d77-aaa4-71e3b9403611/channels?session_id=2dce7765-d068-4e8a-b26d-6832a6e6801e (127.0.0.1): Kernel does not exist: 2eb1e25f-9d86-4d77-aaa4-71e3b9403611

明白了,它还是找到的anaconda,素以还是进入anaconda的环境试试吧。

直接快捷图标启动anaconda jupyter notebook,但是目录是默认目录。于是还是到anaconda的powershell环境里,切换到e:盘后,执行jupyter-lab启动

这回就正常了。

### 设置Python AI编程环境 #### 安装Python解释器 对于Windows用户,安装过程相对简单。只需双击下载的安装包并依照提示完成安装,在此期间建议勾选“Add Python to PATH”选项以便于后续操作能够在命令行中直接调用Python[^1]。 macOS用户的安装流程也较为简便,默认设置通常已能满足大多数需求;而Linux发行版上可以通过特定的包管理器指令来部署Python环境。 #### 获取必要的库支持 为了构建AI应用程序,除了基本的语言解释器外还需要一系列重要的第三方库: - **NumPy**: 提供多维数组对象及其派生对象的支持,这是科学计算的基础。 - **Pandas**: 数据分析和处理的核心工具之一,提供了高效的数据结构如DataFrame用于表格型数据的操作。 - **Matplotlib/Seaborn**: 可视化图形绘制的重要组件,帮助直观展示数据分析的结果。 - **Scikit-Learn**: 实现机器学习算法的标准接口,简化了模型的选择、训练及评估工作流。 - **TensorFlow/Keras 或 PyTorch**: 这些框架专为深度学习设计,能够加速神经网络的设计与优化进程。 可以利用`pip`, Python官方推荐的软件包管理系统来进行这些依赖项的获取。例如要安装上述提到的部分常用库,可以在命令行输入如下命令: ```bash pip install numpy pandas matplotlib seaborn scikit-learn tensorflow torch ``` #### 配置集成开发环境(IDE) 选择合适的IDE有助于提高编码效率。Jupyter Notebook是一个非常受欢迎的选择,尤其适合探索性的数据分析项目因为它允许创建交互式的文档形式记录代码片段、图表和其他多媒体资源。Anaconda则是另一个集成了众多预编译科学计算包分发版本的一站式解决方案,附带了Spyder, JupyterLab等多种IDE可供挑选[^2]。 通过以上步骤就可以建立起一个功能完备的Python AI编程环境,准备好迎接各种挑战了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值