【建议收藏】一口气学完谷歌最新AI提示工程教程精华,看完直接弯道飙车!

这几天相信大家都被谷歌的 Gemini 2.5 大模型刷屏了:互联网时代的王者终于在 AI 领域抢回了宝座——凭借其在代码编程、超长上下文、绘画等出色能力,吊打传统的优秀大模型。

在这个节点上,谷歌又发布了最新的提示词工程教程。而官方发布的教程往往是最具含金量的——里面提炼的是其团队对大模型深刻的理解与应用。

所以如果你也想好好把 AI 用到位,这份教程你不能错过。

Image

Image

看到这里,可能会有人开始质疑:在AI已能自动思考的2025年——毕竟Deepseek 的深度思考能力已经能让 AI 把我们的需求描绘的很具体了——我们为什么还需要学习提示工程?

事实是,尽管LLM越来越强大,但它们本质上仍是预测引擎 :LLM通过重复预测下一个token的操作来工作,将先前预测的token添加到文本末尾,以预测下一个token。这种预测基于LLM训练数据中看到的内容与你输入内容之间的关系。

这就是提示工程的价值所在:不充分的提示会导致模糊、不准确的响应,阻碍AI提供有意义的输出。

当你决定要学习的时候,可能会遇到下一个问题——这份提示词文档太长啦,60 页,很少人能认真看完,而且从头读到尾也不是正确的读书方法。

所以这里,我帮大家做了今天这篇浓缩精华的省流版,整体结构是完全根据手册的,大家先从头看到尾,根据自己对 AI 的掌握程度,选择感兴趣的地方,再到原文档里深入学习。

但其实对于大部分普通用户,看完这篇也就够了。

谷歌最新AI提示工程教程精华

先看目录:

LLM配置与控制

  • 输出长度控制技巧
  • Temperature参数调节
  • Top-K与Top-P采样策略

提示技术进阶

  • 零样本与少样本提示
  • 系统、角色与上下文提示
  • 思维链(CoT)推理方法
  • 自洽性与思维树高级技术
  • ReAct交互式推理模式
  • 自动提示工程
  • 代码相关提示技巧

实用输出与应用

  • 结构化输出(JSON、表格)
  • 分步骤输出设计
  • 实战应用与最佳实践

每个部分都包含详细说明、模板示例和实际应用场景,让你能够立即将所学付诸实践。

1. 提示工程基础

什么是提示工程?

提示工程是设计高质量提示的过程,目的是引导大型语言模型生成准确、相关的输出。根据谷歌的定义,它是"设计高质量提示的过程,这些提示指导LLM生成准确的输出。此过程涉及调整以找到最佳提示,优化提示长度,以及评估与任务相关的提示的写作风格和结构。"

大型语言模型(LLM)本质是一个预测引擎:输入文本,预测下一个可能的词语。模型连续地预测下一个token应该是什么,将先前预测的token添加到文本末尾,不断重复此过程生成完整回答。

核心原理

  • LLM根据训练数据预测下一个词的概率
  • 好的提示能引导模型产生符合预期的输出
  • 提示工程是一个反复试验的过程

当你编写提示时,你实际上是在设置条件让LLM预测出正确的词序列。这就是为什么提示的清晰度和精确性如此重要 - 模型只能基于你提供的信息作出预测。

提示工程流程

谷歌研究指出,有效的提示工程通常遵循这一流程:

  1. 选择合适的模型(如Gemini、GPT、Claude等)
  2. 优化模型配置参数
  3. 设计并测试提示
  4. 分析输出结果并调整

实用技巧

  1. 清晰明确:提供具体指令而非模糊描述
  2. 使用示例:通过示例展示你期望的输出格式
  3. 记录尝试:保存不同提示版本,追踪效果

模板:基础提示框架

任务:[具体描述你需要完成的任务]
输出格式:[描述你期望的输出格式]
限制条件:[列出必须遵守的约束]
示例:[提供一个输入-输出示例]

[你的具体输入]

应用场景:撰写电子邮件回复

任务:帮我回复一封客户投诉邮件
输出格式:一封专业、有同理心且解决问题的邮件
限制条件:邮件不超过150字,语气友好但专业
示例:见下方

客户邮件:
"你们的产品上周到货,但发现有明显划痕,非常失望,要求退款。"

2. LLM输出配置

选择了模型后,还需要配置一系列参数来控制LLM的输出。谷歌的研究显示,这些参数直接影响生成内容的质量和特性。

2.1 输出长度

控制LLM生成内容的长度对于获得理想结果至关重要。谷歌指出:“生成更多token需要LLM进行更多计算,从而导致更高的能源消耗和可能更慢的响应时间,进而导致更高的成本。”

需要理解的是,减少输出长度限制并不会让模型自动生成更简洁的回答 - 它只会在达到限制时停止生成。因此,如果需要简短回答,你需要在提示中明确说明。

最佳实践

  • 设置适当的最大token数量
  • 在提示中明确说明期望的输出长度
  • 记住更长的输出会消耗更多资源和时间

实际应用

  • 简短回复:50-100 tokens
  • 一般内容:200-500 tokens
  • 详细报告:500-1000 tokens以上

2.2 采样控制

采样控制决定了LLM如何从预测的词概率中选择下一个词。谷歌解释道:“LLM并不正式地预测单个token。相反,LLM预测下一个token可能是什么的概率,LLM词汇表中的每个token都有一个概率。然后对这些token概率进行采样,以确定下一个生成的token将是什么。”

Temperature(温度)

Temperature控制输出的随机性和创造性。谷歌描述它为"控制token选择中的随机程度"的参数。

graph LR
    A[Temperature] --> B[低温度 0-0.3]
    A --> C[中温度 0.3-0.7]
    A --> D[高温度 0.7-1.0]
    B --> E[确定性强/重复性高]
    C --> F[平衡创造性和一致性]
    D --> G[创造性强/多样化]

谷歌解释:“0的temperature(贪婪解码)是确定性的:始终选择概率最高的token”,而"接近最大值的temperature往往会产生更随机的输出"。

应用场景对照表

场景推荐温度原因
代码生成0.1-0.2需要准确性和一致性
客服回复0.3-0.5需要一致但不机械的回答
创意写作0.7-0.9需要独特和创新的内容
事实问答0需要最确定的答案
Top-K和Top-P

谷歌将这两个参数定义为"LLM中使用的两种采样设置,用于将预测的下一个token限制为来自具有最高预测概率的token"。

  • Top-K:从概率最高的K个词中选择。“top-K越高,模型的输出就越有创造性和多样性;top-K越低,模型的输出就越受限制和基于事实。”
  • Top-P(nucleus sampling):选择累积概率达到P值的词。“P的值范围从0(贪婪解码)到1(LLM词汇表中的所有token)。”

谷歌提示工程指南指出:“在top-K和top-P之间进行选择的最佳方法是同时试验这两种方法(或两者一起),看看哪种方法产生你想要的结果。”

配置组合建议

  • 事实/精确任务:temperature 0,top-k 40,top-p 1
  • 一般任务:temperature 0.2,top-k 40,top-p 0.95
  • 创意任务:temperature 0.7-0.9,top-k 40,top-p 0.99

谷歌的研究表明:“作为一个通用的起点,temperature为0.2,top-P为0.95,top-K为30将为你提供相对连贯的结果,这些结果可能具有创造性,但不会过于极端。”

模板:配置选择器

任务类型:[事实回答/创意生成/代码编写/其他]
创造性要求:[低/中/高]
一致性要求:[低/中/高]

推荐配置:
- Temperature: [0-1之间的值]
- Top-K: [整数值,通常20-40]
- Top-P: [0-1之间的值]

3. 提示工程技巧

掌握提示工程的核心技巧能够显著提升你与AI的交互质量。谷歌研究指出:“LLM经过调整以遵循指令,并在大量数据上进行训练,因此它们可以理解提示并生成答案。但LLM并不完美;你的提示文本越清晰,LLM就越能更好地预测下一个可能的文本。”

我们将从简单到复杂,探索各种提示技巧。

3.1 通用提示/零样本

零样本提示是最简单的提示类型,不提供示例,只给出任务描述。谷歌将其描述为:“最简单的提示类型。它只提供任务的描述和一些文本,供LLM开始处理。这个输入可以是任何内容:一个问题、一个故事的开头或指令。‘零样本’这个名称代表’没有示例’。”

这种方法适用于简单明确的任务,模型已经有足够的背景知识来处理。

模板:零样本提示

[指令] [输入]

应用场景:情感分析

将以下电影评论分类为正面、中性或负面。

评论:"这部电影场景华丽,演员阵容强大,但情节发展缓慢,让人昏昏欲睡。"

3.2 单样本/少样本提示

当零样本提示效果不佳时,提供示例可以帮助模型理解你的要求。谷歌解释:“单样本提示提供单个示例,因此得名一次性。这个想法是模型有一个可以模仿的示例,以最好地完成任务。少样本提示向模型提供多个示例。这种方法向模型展示了它需要遵循的模式。”

模板:少样本提示

任务:[任务描述]

示例1:
输入:[示例输入1]
输出:[示例输出1]

示例2:
输入:[示例输入2]
输出:[示例输出2]

现在,请处理:
输入:[实际输入]
输出:

谷歌建议:“作为一般经验法则,你应该为少样本提示使用至少三到五个示例。但是,对于更复杂的任务,你可能需要使用更多示例,或者由于模型的输入长度限制,你可能需要使用更少的示例。”

应用场景:客户查询分类

任务:将客户查询分类为以下类别之一:账户问题、技术支持、账单问题、产品信息、投诉。

示例1:
输入:"我无法登录我的账户,一直显示密码错误。"
输出:账户问题

示例2:
输入:"你们的新产品什么时候上市?"
输出:产品信息

现在,请处理:
输入:"我的上个月账单金额似乎有误,应该没有这么多。"
输出:

最佳实践

  • 使用3-5个多样化的示例
  • 确保示例涵盖边缘情况
  • 对于分类任务,混合不同类别的示例

谷歌指出:“当你为提示选择示例时,请使用与你想要执行的任务相关的示例。这些示例应该是多样化的、高质量的和写得好的。一个小错误可能会使模型感到困惑,并导致不希望的输出。”

3.3 系统、上下文和角色提示

这三种提示技术可以帮助你更精确地引导LLM的行为。谷歌将它们区分为:

“系统、上下文和角色提示都是用于指导LLM生成文本的技术,但它们侧重于不同的方面:系统提示为语言模型设置了整体上下文和目的;上下文提示提供与当前对话或任务相关的特定细节或背景信息;角色提示为语言模型分配要采用的特定角色或身份。”

系统提示

定义模型的整体上下文和目标。谷歌解释:“系统提示定义了模型应该做什么的’大局’,例如翻译语言、分类评论等。”

模板:系统提示

你是[角色描述]。你的任务是[任务描述]。请确保你的回答[特定要求]。

应用场景:医疗咨询助手

你是一名有20年经验的全科医生。你的任务是提供初步健康建议。请确保你的回答清晰、专业,并总是建议严重情况应当寻求真实医生的当面诊断。

角色提示

为模型分配特定角色,塑造输出风格和专业知识。谷歌描述它为:“角色提示是提示工程中的一种技术,它涉及为gen AI模型分配一个特定的角色。这可以帮助模型生成更相关和信息丰富的输出,因为模型可以根据分配给它的特定角色来设计其响应。”

模板:角色提示

请以[角色]的身份回答以下问题,使用[语气]的风格。
[问题或任务]

应用场景:历史讲解

请以19世纪著名历史学家的身份,用严谨学术但通俗易懂的风格,解释工业革命对欧洲社会结构的影响。

上下文提示

提供与当前对话或任务相关的具体细节或背景信息。谷歌指出它:“提供与当前对话或任务相关的特定细节或背景信息。它帮助模型理解所提问的细微差别,并相应地调整响应。”

模板:上下文提示

背景:[提供相关背景信息]
情境:[描述当前情境]
任务:[具体任务要求]

应用场景:产品推荐

背景:用户是一位35岁的户外爱好者,经常参加徒步和攀岩活动。
情境:用户计划在下个月进行一次为期一周的高海拔徒步旅行。
任务:推荐3种适合此次旅行的背包,并解释每种背包的优点。

3.4 退后提示

退后提示是一种先解决一般性问题再聚焦具体任务的技术。谷歌将其定义为:“一种通过提示LLM首先考虑与手头特定任务相关的更一般性问题,然后将该一般性问题的答案输入到后续的特定任务提示中,从而提高性能的技术。”

这种方法的核心思想是让模型先"退后一步",考虑更广泛的知识和原则,然后再处理具体问题。

模板:退后提示

步骤1:[请先回答一个与任务相关的更广泛问题]
步骤2:根据你在步骤1中的回答,[解决具体任务]

应用场景:技术问题解决

步骤1:解释计算机网络中常见的连接问题有哪些类型,以及它们的典型症状。
步骤2:根据你在步骤1中的解释,判断并解决这个问题:"我的电脑可以连接Wi-Fi但无法访问任何网站"。

谷歌的研究表明:“通过关注一般原则而不是具体细节,退后提示可以帮助减轻LLM响应中的偏差。”

3.5 思维链(Chain of Thought, CoT)

思维链是一种引导模型生成中间推理步骤的技术,特别适合解决需要逻辑推理的问题。谷歌将其定义为:“一种通过生成中间推理步骤来提高LLM的推理能力的技术。这有助于LLM生成更准确的答案。”

模板:思维链提示

[问题]
让我们一步一步思考。

应用场景:数学问题

小明有15个苹果,他给了小红3个,又给了小李自己苹果数量的1/3。小明最后还剩多少个苹果?让我们一步一步思考。

谷歌指出思维链的优势:“首先,它在非常有效的同时也很省力,并且可以与现成的LLM很好地配合使用(因此无需进行微调)。你还可以通过CoT提示获得可解释性,因为你可以从LLM的响应中学习并查看所遵循的推理步骤。”

最佳实践

  • 使用"一步一步"、"逐步思考"等提示词
  • 温度设为0以获得确定性结果
  • 结合少样本示例更有效

3.6 自洽性

自洽性是思维链的进阶技术,通过生成多个不同推理路径并选择最一致答案来提高准确性。谷歌描述:“自洽性结合了采样和多数投票,以生成不同的推理路径并选择最一致的答案。它提高了LLM生成的响应的准确性和连贯性。”

模板:自洽性提示

[问题]
请给出5种不同的思考路径,然后选择最合理的答案。

应用场景:逻辑推理

一个盒子里有红球和蓝球共20个。如果随机抽取一个球是红球的概率是35%,那么盒子里有多少个红球?请给出5种不同的思考路径,然后选择最合理的答案。

谷歌解释其工作原理:“1. 生成不同的推理路径:多次向LLM提供相同的提示。高温设置鼓励模型生成关于问题的不同推理路径和视角。2. 从每个生成的响应中提取答案。3. 选择最常见的答案。”

3.7 思维树(Tree of Thoughts, ToT)

思维树是对思维链的扩展,允许模型同时探索多条推理路径。谷歌解释:“它概括了CoT提示的概念,因为它允许LLM同时探索多个不同的推理路径,而不仅仅是遵循单一的线性思维链。”

模板:思维树提示

[复杂问题]
请探索以下几个思路:
1. [思路方向1]
2. [思路方向2]
3. [思路方向3]
对每个思路进行分析,然后决定最佳解决方案。

应用场景:商业决策

一家公司面临销售下滑问题,请探索以下几个思路:
1. 提高产品质量
2. 降低价格
3. 增加营销预算
对每个思路进行深入分析,考虑可能的成本、效益和风险,然后决定最佳解决方案。

谷歌指出:“这种方法使ToT特别适合需要探索的复杂任务。它的工作原理是维护一个思维树,其中每个思维代表一个连贯的语言序列,作为解决问题的中间步骤。”

3.8 ReAct(推理 & 行动)

ReAct结合了推理能力与使用外部工具的能力,模仿人类思考-行动循环。谷歌将其定义为:“一种范例,它使LLM能够使用自然语言推理结合外部工具(搜索、代码解释器等)来解决复杂的任务,从而允许LLM执行某些操作,例如与外部API交互以检索信息。”

模板:ReAct提示

[问题]
思考:[分析问题]
行动:[执行搜索或查询工具]
观察:[记录结果]
思考:[基于观察继续分析]
行动:[执行下一步]
...
最终答案:[结论]

应用场景:研究任务

问题:太阳系中最大的五颗卫星是什么,它们分别围绕哪颗行星运行?
思考:我需要查找太阳系卫星的信息并按大小排序。
行动:搜索"太阳系最大卫星排名"
观察:[搜索结果显示...]
思考:根据结果我可以确定前五大卫星...
行动:验证每颗卫星属于哪颗行星
观察:[验证结果...]
最终答案:[列出五大卫星及其所属行星]

谷歌解释其工作原理:“ReAct提示通过将推理和行动组合成一个’思考-行动’循环来工作。LLM首先推断问题并生成行动计划。然后,它执行计划中的操作并观察结果。然后,LLM使用观察结果更新其推理并生成新的行动计划。”

3.9 自动提示工程

自动提示工程是使用模型自身来优化提示的技术。谷歌描述它为:“不仅减轻了人工输入的需要,还提高了模型在各种任务中的性能。你将提示一个模型来生成更多提示。评估它们,可能修改好的提示。然后重复这个过程。”

模板:自动提示工程

任务:为了[目标],生成10个不同的提示词。
要求:提示词应该[具体要求]。

应用场景:市场调研

任务:为了了解用户对新智能手表的看法,生成10个不同的调研问题。
要求:问题应该开放性,避免引导性,覆盖功能、外观、价格和用户体验等方面。

谷歌解释其流程:“1. 编写将生成输出变体的提示。2. 通过根据选择的指标对候选提示进行评分来评估所有候选指令。3. 选择具有最高评估分数的候选指令。”

3.10 代码编程

LLM在处理代码相关任务方面非常有效。谷歌指出:“Gemini主要关注基于文本的提示,其中也包括用于返回代码的编写提示。”

编写代码

模板:代码编写提示

任务:用[编程语言]编写代码来[功能描述]。
要求:
- [功能要求1]
- [功能要求2]
- [性能/风格要求]

应用场景:数据处理

任务:用Python编写代码来分析CSV文件中的销售数据。
要求:
- 读取名为'sales_data.csv'的文件
- 计算每月销售总额和平均值
- 找出销售额最高的三个月
- 生成一个简单的折线图显示趋势
- 代码需添加注释并处理可能的异常

代码解释

谷歌指出:“当你作为一名开发人员在团队中工作时,你必须阅读别人的代码。Gemini也可以在这方面为你提供帮助。”

模板:代码解释提示

请解释以下[编程语言]代码的功能:

语言转换

将代码从一种编程语言转换为另一种。谷歌的示例展示了如何将Bash代码转换为Python。

模板:代码转换提示

请将以下[源语言]代码转换为[目标语言]:

代码调试

找出代码中的问题并提供修复方案。

模板:代码调试提示

以下[编程语言]代码有错误:
[错误代码]

错误信息:
[错误信息]

请找出问题并提供修复方案

谷歌强调:“由于LLM无法进行推理,并且会重复训练数据,因此首先阅读和测试你的代码至关重要。”

4. 实用输出格式

选择合适的输出格式可以大大提高LLM回答的可用性。谷歌建议:“对于非创造性任务,例如提取、选择、解析、排序、排名或分类数据,请尝试以JSON或XML等结构化格式返回输出。”

4.1 结构化输出

谷歌解释结构化输出的优势:“从提取数据的提示返回JSON对象有一些好处。在实际应用程序中,我不需要手动创建此JSON格式,我可以按排序顺序返回数据(在处理datetime对象时非常方便),但最重要的是,通过提示JSON格式,可以强制模型创建结构并限制幻觉。”

模板:JSON输出提示

[任务描述]
以JSON格式返回结果,遵循以下结构:
```json
{
  "字段1": "类型和描述",
  "字段2": "类型和描述",
  ...
}

应用场景 :产品信息提取

从以下产品描述中提取关键信息。
以JSON格式返回结果,遵循以下结构:
```json
{
  "产品名称": "字符串",
  "品牌": "字符串",
  "价格": "数字",
  "主要特性": ["字符串数组"],
  "适用场景": ["字符串数组"]
}


产品描述:
"XDR-500专业摄影无人机,佳能科技最新力作,售价4999元。配备4K高清摄像头和30分钟续航,适合户外摄影和航拍测绘。"

谷歌总结了JSON输出的好处:“始终以相同的样式返回,专注于你要接收的数据,减少幻觉的可能性,使其具有关系感知能力,你将获得数据类型,你可以对其进行排序。”

4.2 表格输出

表格是展示比较信息和数据集的理想方式。 模板:表格输出提示

[任务描述]
请以下表格式输出结果:

| 列1 | 列2 | 列3 |
|-----|-----|-----|
| 数据 | 数据 | 数据 |

4.3 分步骤输出

分步骤输出适合解释复杂概念或提供详细指南。 模板:分步骤输出

[任务描述]
请按以下步骤输出结果:

## 步骤1:[步骤描述]
[内容]

## 步骤2:[步骤描述]
[内容]

...

## 总结
[总结内容]

提示工程实战技巧

谷歌的研究表明,提示工程是一个迭代过程,需要不断尝试和改进。以下是谷歌提示工程指南中总结的关键实战技巧:

  1. 迭代改进 :持续测试和优化你的提示。谷歌指出:“提示工程是一个迭代过程。设计和测试不同的提示,分析和记录结果。”

  2. 清晰简洁 :使用简单直接的语言,避免歧义。谷歌建议:“提示应该简洁、清晰且易于理解,无论对于你还是模型而言。根据经验,如果提示对你来说已经很混乱,那么它可能也会使模型感到困惑。”

  3. 提供上下文 :确保模型理解必要的背景信息。谷歌强调:“通过提供上下文提示,你可以帮助确保你的人工智能互动尽可能地无缝和高效。”

  4. 指定输出格式 :明确说明你希望的结果形式。谷歌建议:“具体说明所需的输出。简洁的指令可能无法充分指导LLM,或者可能过于通用。”

  5. 记录尝试 :使用下面的模板记录不同提示的效果。谷歌强调这一点的重要性:“记录你的提示工作,这样你就可以随着时间的推移了解哪些有效,哪些无效。”

提示记录模板

提示名称:[名称]
目标:[描述目标]
模型:[使用的模型]
参数:
- Temperature: [值]
- Token限制: [值]
- Top-K: [值]
- Top-P: [值]
提示内容:
[完整提示]
输出:
[模型输出]
评估:
[效果评价和改进方向]

内容篇幅有限,具体的内容一下方式获得哦!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值