开源跨平台的桌面智能助手和MCP(Model Context Protocol)客户端:5ire 使用MCP(Model Context Protocol)实践

5ire是一款开源跨平台的桌面智能助手和MCP(Model Context Protocol)客户端

官网:5ire - A Sleek Desktop AI Assistant and MCP (Model Context Protocol) Client

github:GitHub - nanbingxyz/5ire: 5ire is a cross-platform desktop AI assistant, MCP client. It compatible with major service providers, supports local knowledge base and tools via model context protocol servers .

star 1.5k ,所以这是一款比较流行的支持MCP的大模型助手。

目录

通过 MCP 服务器支持工具

安装使用5ire

安装5ire

启动配置5ire

创建或添加几个mcp工具

碰到的第一个坑:设定模型

安装Time MCP工具

现在的问题:在5ire里,可以安装工具,但是大模型没有调用工具

安装Hacker News工具

总结

踩过的一些坑:


通过 MCP 服务器支持工具

MCP 是一种开放协议,它标准化了应用程序如何为 LLM 提供上下文。将 MCP 想象成 AI 应用程序的 USB-C 端口。正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 也提供了一种将 AI 模型连接到不同数据源和工具的标准化方式。

使用工具,您可以访问文件系统、获取系统信息、与数据库交互、访问远程数据等,而不仅仅是进行简单的对话。

近期MCP非常火,很多人都预测今年2025年将是MCP年,个人深有同感。但是在5ire 使用MCP实践过程中,遇到了很多问题,留档以助学习和记忆!

安装使用5ire

安装5ire

Windows可以直接下载安装软件,到这里下载:

启动配置5ire

启动5ire后,先去确认下它是否支持MCP:

点工具,工具市场,终于能看到MCP服务软件了!

创建或添加几个mcp工具

新创建一个Blender-mcp的

配置如下:

{
  "name": "blender-mcp",
  "key": "blendermcp",
  "description": "blender-mcp",
  "command": "uvx",
  "args": [
    "blender-map"
  ]
}

 然后停止原来的服务:

uvx blender-mcp

但是连接还是报错:

Error: MCP error -1: Connection closed

碰到的第一个坑:设定模型

而且这个5ire软件里面竟然没有找到设置大模型的地方,“首页”显示:请先在设置页面填写 API 的必要信息。

创建新对话“目录”后,可以设定模型,但是只有8个模型可选...逼的我都问AI去了....

晕,找到了,原来是在“空间”-“设置”里面可以设置API信息。使用的是自建 大模型API服务器192.168.1.5:1337,所以在5ire里面选的是LMStudio模型,这样可以浏览到自建服务器里所有的模型。如果选OpenAI,则只有8个模型可以选,且里面没有deepseek模型。

安装Time MCP工具

设置好后,在工具那里安装了Time工具。

但是对话框里问它几点,还是回答:我无法直接执行代码或使用实时工具查看时间。

发现自己本机还没有nodejs,装nodejs看看。

装完没变化。这时候又尝试安装几个工具,比如File System、Shell等,但是都启动失败。

关掉5ire,然后再打开5ire,这回几个新装的工具都启动成功了!

还是无法在chat窗口调用Time等工具,是不是需要专门的支持函数调用的大模型? 

换用chatglm模型试试

还是无法跟工具交互。

现在的问题:在5ire里,可以安装工具,但是大模型没有调用工具

问题解决,后来是测试了很多模型比如gpt-4o、chatglm、gpt-4等(正好自己搭建的平台claude-3-5-sonnet等几个claude模型都不能用),发现deepseek-v3 可以使用,问题解决

比如问它现在几点,输出:

现在几点了? 当前时间
今天是 2025 年 3 月 17 日,星期一。以下是部分地区的当前时间:

Al Jīzah, 埃及:3:40 上午
安卡拉, 土耳其:4:40 上午
万隆, 印度尼西亚:8:40 上午

太棒了! 

安装Hacker News工具

测试成功

从Hacker News 下载2个故事

从 Hacker News 网站获取一些头条新闻 You: ### 获取 Hacker News 头条新闻

以下是从 Hacker News 获取的一些最新头条新闻信息:

  1. Hacker News AI 助手

    • 链接GitHub 项目
    • 内容: 一个中文日报项目,自动抓取 Hacker News 和 Dev Community 热门文章及评论,并通过 AI 生成中文解读与总结。

总结

终于成功让MCP返回了当前时间和 从Hacker News 网站获取一些头条新闻,这次MCP的实践终于成功了。

测试mcp成功的模型:deepseek-v3 llama3.2:3b 

踩过的一些坑:

首先因为国内无法使用claude desktop,找合适的MCP工具颇费了一些功夫。幸好最后两个软件5ire和mcphost都调试成功了。

因为没怎么接触过nodejs,所以对MCP 服务器的书写方式也比较陌生。不过好消息是,首先mcp服务器的书写和启动非常简单,其次一些软件会把MCP服务器放在软件里面,只要点点鼠标就行了,非常方便。

第三点就是一些模型好像不支持函数调用,又因为没有用Claude官方适配的模型,所以要一个一个试模型,花费了一些时间。

<think>好的,用户想了解MCPModel Context Protocol)的相关信息及其在IT领域的应用。首先,我需要从提供的引用资料中提取关键点,并组织成一个结构清晰的回答。 根据引用[1],MCP是一个开放协议,用于AI应用与本地或远程资源的安全交互。引用[2]提到它实现了LLM应用与外部数据源的无缝集成,由uv这个Python包管理器支持。引用[3]则说明了其客户端-服务器架构、数据交换形式、安全机制未来扩展计划。 接下来,我需要将信息分点整理,确保涵盖定义、核心功能、技术架构、应用场景、安全机制未来发展。同时,要生成相关问题,帮助用户深入理解。要注意使用中文,正确应用LaTeX格式,比如提到协议版本时用$v1.0$,并引用标识。最后,检查是否符合所有系统级指令,特别是引用标注的位置格式是否正确。</think>### MCPModel Context Protocol)模型上下文协议解析 #### 一、定义与核心功能 MCP是一种实现AI应用程序与本地/远程资源安全交互的开放协议,通过标准化接口支持LLM与外部数据源的无缝集成[^1][^2]。其核心功能包括: 1. 构建$AI \leftrightarrow Resource$双向通信通道 2. 支持JSON、XML、Protobuf等多种数据格式交换 3. 提供动态资源分配机制,如内存管理$M_{alloc}(size)$ 4. 实现访问控制策略$P_{access} = \{user, resource, permission\}$ #### 二、技术架构 采用客户端-服务器模式,当前架构包含: $$Client \xrightarrow[SSL/TLS]{REST API} Server \xrightarrow{Resource Manager} Data Sources$$ 其中uv工具包(Rust编写)提供快速部署能力,支持Python环境下的依赖管理 #### 三、典型应用场景 1. 企业知识库实时检索:$\exists x \in KB, query(x) \rightarrow result$ 2. 分布式计算资源调度 3. 多模态数据处理流水线 4. 联邦学习中的安全数据交换 #### 四、安全机制 协议内置三重防护: 1. 传输层加密:$E_{AES-256}(data)$ 2. 访问控制矩阵:$ACL = \bigcup_{i=1}^{n}(user_i, resource_i)$ 3. 操作审计日志:$\log(t)=\sum event(t_i)$ #### 五、未来发展路径 根据路线图,2024年将实现: 1. OAuth 2.0集成:$Auth_{flow} = code \rightarrow token$ 2. 跨云平台适配:$AWS \oplus Azure \oplus GCP$ 3. 量子安全加密升级:$QKD_{BB84}$协议支持[^3] ```python # MCP基础调用示例 import mcp client = mcp.Client(api_key="your_key") response = client.query( resource="database", operation="SELECT * FROM table WHERE condition='value'", format="SQL" ) print(response.data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值