一文搞懂 MCP Servers

什么是MCP

MCP概念

MCP(Model Context Protocol,模型上下文协议)是由 Anthropic 提出并于 2024 年 11 月开源的一种通信协议,旨在解决大型语言模型(LLM)与外部数据源及工具之间无缝集成的需求。

它通过标准化 AI 系统与数据源的交互方式,帮助模型获取更丰富的上下文信息,从而生成更准确、更相关的响应。

主要功能

  • 上下文共享:应用程序可以通过 MCP 向模型提供所需的上下文信息(如文件内容、数据库记录等),增强模型的理解能力。
  • 工具暴露:MCP 允许应用程序将功能(如文件读写、API 调用)暴露给模型,模型可以调用这些工具完成复杂任务。
  • 可组合的工作流:开发者可以利用 MCP 集成多个服务和组件,构建灵活、可扩展的 AI 工作流。
  • 安全性:通过本地服务器运行,MCP 避免将敏感数据上传至第三方平台,确保数据隐私。

MCP架构

MCP 采用客户端-服务器架构:

  • MCP 客户端(Client):通常是 AI 应用程序(如 Claude Desktop 或其他 LLM 工具),负责发起请求并与服务器通信。
  • MCP 服务器(Server):轻量级程序,负责暴露特定的数据源或工具功能,并通过标准化协议与客户端交互。

通信格式:基于 JSON-RPC 2.0,支持请求、响应和通知三种消息类型,确保通信的标准化和一致性。

MCP Servers主要功能

MCP Servers 作为一个轻量级的本地服务,旨在为客户端提供数据访问和功能执行的接口。

1. 资源暴露(Resource Exposure)

资源是服务器提供给客户端的数据实体,可以是文件、数据库记录、内存中的对象等。

例如:

  • 文件资源:file:///home/user/report.txt
  • 内存资源:memo://recent-insights

2. 工具提供(Tool Provisioning)

工具是服务器暴露的可执行功能,客户端可以通过调用这些工具完成特定任务。

例如:

  • 查询数据库:query_database(参数:SQL 语句,返回:查询结果)
  • 文件写入:write_file(参数:文件路径、内容)

3. 动态通知(Dynamic Notification)

当资源发生变化时,服务器可以通过通知机制(如 notification 消息)主动推送更新到客户端。

4. 会话管理(Session Management)

处理客户端的连接初始化、能力协商和会话关闭。

自定义 MCP Servers

  1. 本地实现一个文件资源服务,创建 mcp_server.py 文件。
import json
import sys

# 处理客户端请求
def handle_request(request):
    method = request.get("method")
    params = request.get("params", {})
    request_id = request.get("id")

    if method == "initialize":
        return {
            "jsonrpc": "2.0",
            "result": {"version": "1.0", "capabilities": ["resources", "tools"]},
            "id": request_id
        }
    elif method == "read_resource":
        uri = params.get("uri")
        with open(uri.replace("file:///", ""), "r") as f:
            content = f.read()
        return {"jsonrpc": "2.0", "result": content, "id": request_id}
    elif method == "call_tool":
        tool_name = params.get("name")
        if tool_name == "echo":
            return {"jsonrpc": "2.0", "result": params.get("message"), "id": request_id}
    else:
        return {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"}, "id": request_id}

# 主循环:通过 Stdio 通信
def main():
    while True:
        # 从 stdin 读取请求
        raw_input = sys.stdin.readline().strip()
        if not raw_input:
            break
        request = json.loads(raw_input)
        
        # 处理请求并返回响应
        response = handle_request(request)
        sys.stdout.write(json.dumps(response) + "\n")
        sys.stdout.flush()

if __name__ == "__main__":
    main()
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  1. 通过 python 启动服务
python mcp_server.py
  • 1.
  1. 在相同的目录下创建 test.txt 文件。
Hello, this is a test file!
  • 1.
  1. 另外启动一个命令窗口,输入:
echo '{"jsonrpc": "2.0", "method": "read_resource", "params": {"uri": "file:///D:/path/to/test.txt"}, "id": 2}' | python mcp_server.py

{"jsonrpc": "2.0", "result": "Hello, this is a test file!", "id": 2}
  • 1.
  • 2.
  • 3.

注:此处使用的是 PowerShell,我们看到服务返回了文件的内容。

使用现有 MCP Servers

GitHub:在 GitHub 上查找 MCP servers:

网站:通过下面的网站查找 MCP servers:

UI自动化相关的 MCP servers

我们以 Playwright 项目为例子。

playwright 项目: https://github.com/AutoTestClass/playwright-mind

在项目里添加 playwright-mcp-server

git clone https://github.com/AutoTestClass/playwright-mind
cd playwright-mind
npm install -g @executeautomation/playwright-mcp-server # <--添加--
  • 1.
  • 2.
  • 3.

MCP Client

MCP client 一般选用 AI 应用程序(如 Claude Desktop、cline 或其他 LLM 工具),负责发起请求并与服务器通信。

我们这里选用 VSCode + cline 的组合,关于二者的使用,铺天盖地都是使用的文章,这里就不介绍了。

  1. 首先,在 VSCode 中打开 cline 插件,在 MCP servers 中搜索 playwright 插件安装。

一文搞懂 MCP Servers_客户端

  1. 然后,配置 playwright mcp servers 的启动配置。

一文搞懂 MCP Servers_json_02

{
  "mcpServers": {
    "playwright": {
      "command": "npx",
      "args": ["-y", "@executeautomation/playwright-mcp-server"]
    }
  }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  1. 最后,通过 LLM 大模型,描述需求(UI 自动化相关操作),LLM 大模型会通过 playwright MCP servers 启动浏览器完成一些 UI 自动化操作。

一文搞懂 MCP Servers_客户端_03

MCP Servers的作用

最后,我们再来总结 MCP Servers 的作用。懒得画图了,下面是我网上找的一张图。结合前面的操作流程,相信你已经知道 MCP Servers 可以做什么了。

一文搞懂 MCP Servers_json_04

MCP Servers 真正的价值不在于我们传统的 UI 自动化测试,因为它是通过文字描述操作浏览器去完成一些工作。并没有自动化的脚本沉淀,当然,如果你把 Prompt 沉淀下来当作自动化脚本也是可以的,这确实颠覆了我们写自动化脚本的形式。
当然,MCP Servers 更多的价值不是浏览器自动化,而是利用 LLM 操作本地资源,例如,本地文件,数据库、git 等。想想 你不需要写复杂的 SQL 语句,通过自然语言描述就可以轻松完成本地数据库的操作。 这种效率的提升是非常明显。

一文搞懂 MCP Servers_客户端_05