Hermite矩阵与正交矩阵-定义及应用

本文介绍了Hermite矩阵,即自共轭矩阵的特性,它在数学和线性代数中有重要应用。同时,解释了正交基的概念,它是向量空间中的一种特殊坐标系,能够用来表示任何向量。正交基的标准要求向量模长为1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hermite矩阵

Hermite矩阵又称作自共轭矩阵、埃尔米特矩阵。
其定义:Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。
根据上述的定义,可以知道Hermite矩阵的共轭转置矩阵等于其本身。

正交基

简单理解就是在向量空间中找出一个坐标系,这个坐标系就是正交基,在向量空间中的所有向量都可以通过正交基来表示。
标准正交基就是向量的模为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值