定义
Hermite矩阵: a i j a_{ij} aij 与 a j i a_{ji} aji 共轭,即实部相等,虚部相反。
Hermite 矩阵的几个性质
Hermite 矩阵的几个性质
(1) 设
A
∈
C
r
m
×
n
(
r
>
0
)
\boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0)
A∈Crm×n(r>0), 则
A
H
A
\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}
AHA 是 Hermite 矩阵,且其特征值均是非负实数;
(2)
rank
(
A
H
A
)
=
rank
A
\operatorname{rank}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)=\operatorname{rank} \boldsymbol{A}
rank(AHA)=rankA;
(3) 设
A
∈
C
m
×
n
\boldsymbol{A} \in \mathbf{C}^{m \times n}
A∈Cm×n, 则
A
=
O
\boldsymbol{A}=\boldsymbol{O}
A=O 的充要条件是
A
H
A
=
O
\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O}
AHA=O. 这些结论请读者证明.
Proof. (1) Hermite矩阵是指A是A的共轭转置,因为 A H A = ( A H A ) H \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} = \left( \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \right)^{\mathrm{H}} AHA=(AHA)H,所以 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA 是
Hermite 矩阵. 因为 x H A H A x = ( A x ) H A x ⩾ 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x} \geqslant 0 xHAHAx=(Ax)HAx⩾0
对于任意非零的 x \boldsymbol{x} x,所以 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA
的特征值均是非负实数.(2) 对于某个的 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn,如果 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0,可以推出 A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0;对于某个的 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn,如果 A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0,则 x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0,可以得到 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0。说明零空间相同,零空间维数相同.
考虑到矩阵的列数=其最大线性无关组的个数(秩)+零空间维数, A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA和 A \boldsymbol{A} A的列数相同,零空间相同,所以秩相同.
(3) 如果 A = O \boldsymbol{A}=\boldsymbol{O} A=O,则 A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O成立;如果 A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O,则对任意 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn,有 x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0,即对任意 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn,有 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0,则对 A \boldsymbol{A} A的任一行向量,均与所有 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn垂直,那么 A \boldsymbol{A} A的所有行都是 O \boldsymbol{O} O,也就是说 A = O \boldsymbol{A}=\boldsymbol{O} A=O.
奇异值和非零奇异值
定义 4. 11 设
A
∈
C
r
m
×
n
(
r
>
0
)
,
A
H
A
\boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0), \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}
A∈Crm×n(r>0),AHA 的特征值为
λ
1
⩾
λ
2
⩾
⋯
⩾
λ
r
>
λ
r
+
1
=
⋯
=
λ
n
=
0
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{n}=0
λ1⩾λ2⩾⋯⩾λr>λr+1=⋯=λn=0 则称
σ
i
=
λ
i
(
i
=
1
,
2
,
⋯
,
n
)
\sigma_{i}=\sqrt{\lambda_{i}}(i=1,2, \cdots, n)
σi=λi(i=1,2,⋯,n) 为
A
\boldsymbol{A}
A 的奇异值;当
A
\boldsymbol{A}
A 为零矩阵时, 它的奇异值都是
0.
0 .
0.
易见,
(1) 矩阵
A
\boldsymbol{A}
A 的奇异值的个数等于
A
\boldsymbol{A}
A 的列数.
(2) A \boldsymbol{A} A 的非零奇异值的个数等于 rank A \operatorname{rank} A rankA.
Proof: A \boldsymbol{A} A 的零奇异值,也就是 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA的零特征根,也就是 A H A x = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{O} AHAx=O的解,那么 A \boldsymbol{A} A的零奇异值的个数也就等于 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA的零空间的维数。
另外, A \boldsymbol{A} A 的所有奇异值的个数等于 A H A \boldsymbol{A}^{\mathrm{H}}\boldsymbol{A} AHA的维数。
从(2)可以看出,矩阵的列数=其最大线性无关组的个数(秩)+零空间维数,则 A \boldsymbol{A} A 的非零奇异值的个数等于 rank A \operatorname{rank} A rankA.