20211005 Hermite矩阵及几个性质

本文探讨了Hermite矩阵的性质,包括它们的共轭转置的性质,特征值非负实数的特性,以及与秩的关系。证明了当矩阵等于零时的充要条件。此外,介绍了奇异值的概念,指出非零奇异值的数量等于矩阵的秩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


定义

Hermite矩阵: a i j a_{ij} aij a j i a_{ji} aji 共轭,即实部相等,虚部相反。


Hermite 矩阵的几个性质

Hermite 矩阵的几个性质

(1) 设 A ∈ C r m × n ( r > 0 ) \boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0) ACrm×n(r>0), 则 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA 是 Hermite 矩阵,且其特征值均是非负实数;
(2) rank ⁡ ( A H A ) = rank ⁡ A \operatorname{rank}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)=\operatorname{rank} \boldsymbol{A} rank(AHA)=rankA;
(3) 设 A ∈ C m × n \boldsymbol{A} \in \mathbf{C}^{m \times n} ACm×n, 则 A = O \boldsymbol{A}=\boldsymbol{O} A=O 的充要条件是 A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O. 这些结论请读者证明.

Proof. (1) Hermite矩阵是指A是A的共轭转置,因为 A H A = ( A H A ) H \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} = \left( \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \right)^{\mathrm{H}} AHA=(AHA)H,所以 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA
Hermite 矩阵. 因为 x H A H A x = ( A x ) H A x ⩾ 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x} \geqslant 0 xHAHAx=(Ax)HAx0
对于任意非零的 x \boldsymbol{x} x,所以 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA
的特征值均是非负实数.

(2) 对于某个的 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} xCn,如果 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0,可以推出 A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0;对于某个的 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} xCn,如果 A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0,则 x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0,可以得到 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0。说明零空间相同,零空间维数相同.

考虑到矩阵的列数=其最大线性无关组的个数(秩)+零空间维数, A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA A \boldsymbol{A} A的列数相同,零空间相同,所以秩相同.

(3) 如果 A = O \boldsymbol{A}=\boldsymbol{O} A=O,则 A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O成立;如果 A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O,则对任意 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} xCn,有 x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0,即对任意 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} xCn,有 A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0,则对 A \boldsymbol{A} A的任一行向量,均与所有 x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} xCn垂直,那么 A \boldsymbol{A} A的所有行都是 O \boldsymbol{O} O,也就是说 A = O \boldsymbol{A}=\boldsymbol{O} A=O.


奇异值和非零奇异值

定义 4. 11 A ∈ C r m × n ( r > 0 ) , A H A \boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0), \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} ACrm×n(r>0),AHA 的特征值为
λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{n}=0 λ1λ2λr>λr+1==λn=0 则称 σ i = λ i ( i = 1 , 2 , ⋯   , n ) \sigma_{i}=\sqrt{\lambda_{i}}(i=1,2, \cdots, n) σi=λi (i=1,2,,n) A \boldsymbol{A} A 的奇异值;当 A \boldsymbol{A} A 为零矩阵时, 它的奇异值都是 0. 0 . 0.

易见,
(1) 矩阵 A \boldsymbol{A} A 的奇异值的个数等于 A \boldsymbol{A} A 的列数.

(2) A \boldsymbol{A} A 的非零奇异值的个数等于 rank ⁡ A \operatorname{rank} A rankA.

Proof: A \boldsymbol{A} A 的零奇异值,也就是 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA的零特征根,也就是 A H A x = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{O} AHAx=O的解,那么 A \boldsymbol{A} A的零奇异值的个数也就等于 A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA的零空间的维数。

另外, A \boldsymbol{A} A 的所有奇异值的个数等于 A H A \boldsymbol{A}^{\mathrm{H}}\boldsymbol{A} AHA的维数。

从(2)可以看出,矩阵的列数=其最大线性无关组的个数(秩)+零空间维数,则 A \boldsymbol{A} A 的非零奇异值的个数等于 rank ⁡ A \operatorname{rank} A rankA.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值