电商交叉销售

文章来源:https://zhuanlan.zhihu.com/p/27304688


数据整合

核心:在有限资源下,尽可能的提供高转化率的用户群,辅助业务增长


1.商品相关性

存在商品A,B,C...,商品之间用户会存在行为信息的关联度,这边可以参考协调过滤算法中的 Item-based ,核心思想在于得出用户在不同商品之间的操作行为的差异性。



可以形成如下的特征矩阵:


商品Xi属于商品A、商品B、...中任意一种

这边相关的常见度量方式有以下几种:

a.距离衡量

包括浏览、点击、搜索等等各种行为的欧式、马氏、闵式、切比雪夫距离、汉明距离计算

b.相似度衡量

包括余弦相似度、杰卡德相似度衡量

c.复杂衡量

包括相关性衡量,熵值衡量,互信息量衡量,相关距离衡量


2.商品行为信息

探求商品及其对应行为信息的笛卡尔积的映射关系,得到一个商品+用户的行为矩阵
商品集合{商品A、商品B、...}
商品属性集合{价格、是否打折、相比其他电商平台的比价、是否缺货...}
用户行为集合{浏览次数、浏览时长、末次浏览间隔、搜索次数、末次搜索间隔...}

通过商品集合X商品属性集合X用户行为集合,形成高维的商品信息魔方,再通过探查算法,筛选优秀表现的特征,这里推荐的有pca,randomforest的importance,lasso变量压缩,相关性压缩,逐步回归压缩等,可适当选取部分方法

最后,我们会得到一个如下的东西:


3.商品购买周期

针对每一件商品,都是有它自身的生命周期的,比如,在三个月内买过冰箱的用户,95%以上的用户是不会选择二次购买的;而在1个月的节点上,会有20%的用户会选择二次购买生活用纸。所以我们需要做的一件事情就是不断更新,平台上面每个类目下面的商品的自身生命周期


这边利用,艾宾浩斯遗忘曲线和因子衰减规律:


确定lamda和b,计算每个类目对应的当前时间下的剩余价值:最高价值(通常为1)xlamdaxb



4.商品挖掘特征,用户挖掘特征

业务运营过程中,通过数据得到1.基础结论,2.挖掘结论,基础结论就是统计结论,比如昨日订单量,昨日销售量 ,昨日用户量,挖掘结论就是深层结论,比如昨日活跃用户数,每日预估销售量,用户生命周期等


存在如下的探索方式:



模型整合

再确定量以上四大类的数据特征之后,我们通过组合模型的方法,判断用户的交叉销售结果

1.cart regression

确保线性数据拟合完整,保证所有用户及数据中,针对线性关系的部分产业用户有高的预测能力

2.ridge regression

确保非线性密度均匀数据拟合完整,保证所有用户及数据中,针对非线性关系,且数据可被网格切分的部分产业用户有高的预测能力

3.Svm-liner 

确保线性且存在大量离群点的数据拟合完整,保证所有用户及数据中,针对异常用户较多的部分产业用户有高的预测能力

4.xgboost

确保数据复杂高维且无明显关系的数据拟合完整,保证所有用户及数据中,针对维度高、数据杂乱的部分产业用户有高的预测能力


以上的组合模型并非固定,也并非一定全部使用,在确定自身产业的特点后,择优选择,然后采取投票方式产出结果即可。


附上推荐Rcode,

cart regression:

library(rpart)

fit <- rpart(y~x, data=database, method="class",control=ct, parms = list(prior = c(0.7,0.3), split = "information"));

## xval是n折交叉验证  
## minsplit是最小分支节点数,设置后达不到最小分支节点的话会继续分划下去  
## minbucket:叶子节点最小样本数  
## maxdepth:树的深度  
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度  
## kyphosis是rpart这个包自带的数据集  
## na.action:缺失数据的处理办法,默认为删除因变量缺失的观测而保留自变量缺失的观测。           
## method:树的末端数据类型选择相应的变量分割方法:  
## 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”  
## parms用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)  
## cost我觉得是损失矩阵,在剪枝的时候,叶子节点的加权误差与父节点的误差进行比较,考虑损失矩阵的时候,从将“减少-误差”调整为“减少-损失”  


ridge regression:

library(glmnet)

glmmod<-glmnet(x,y,family = 'guassian',alpha = 0)

最小惩罚:

glmmod.min<-glmnet(x,y,family = 'gaussian',alpha = 0,lambda = glmmod.cv$lambda.min)

1个标准差下的最小惩罚:

glmmod.1se<-glmnet(x,y,family = 'gaussian',alpha = 0,lambda = glmmod.cv$lambda.1se)


Svm-liner :

library(e1071)

svm(x, y = NULL, scale = TRUE, type = NULL, kernel = "",degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),coef0 = 0, cost = 1, nu = 0.5, subset, na.action = na.omit)

##type用于指定建立模型的类别:C-classification、nu-classification、one-classification、eps-regression和nu-regression

##kernel是指在模型建立过程中使用的核函数

##degree参数是指核函数多项式内积函数中的参数,其默认值为3

##gamma参数给出了核函数中除线性内积函数以外的所有函数的参数,默认值为l

##coef0参数是指核函数中多项式内积函数与sigmoid内积函数中的参数,默认值为0

##参数cost就是软间隔模型中的离群点权重

##参数nu是用于nu-regression、nu-classification和one-classification类型中的参数


xgboost:

library(xgboost)

xgb <- xgboost(data = data.matrix(X[,-1]),  label = y, eta = 0.1,max_depth = 15, nround=25, subsample = 0.5,colsample_bytree = 0.5,seed = 1,eval_metric = "merror",objective = "multi:softprob",num_class = 12, nthread = 3)


##eta:默认值设置为0.3。步长,控制速度及拟合程度

##gamma:默认值设置为0。子树叶节点个数

##max_depth:默认值设置为6。树的最大深度

##min_child_weight:默认值设置为1。控制子树的权重和

##max_delta_step:默认值设置为0。控制每棵树的权重

##subsample: 默认值设置为1。抽样训练占比

##lambda and alpha:正则化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值