pytorch转onnx 模型输出对不齐

博主在将PyTorch模型转换为ONNX时,遇到28%数据对齐问题,原因在于upsample层只支持nearest模式。通过调整为bilinear并查阅官方文档,解决了问题。建议在迁移模型前检查算子支持情况,尽量使用torch.nn模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近,在把pytorch模型转为onnx时,遇到一个问题,有28%的数据对不齐,因为接触的是显著性task的,里面用了一些upsample层。

查了pytorch官方文档后发现,这里的upsample只支持nearest一种模式,而我用的是bilinear,在改变了这个之后,结果就对的齐了。

 

建议:先去官方文档看一下哪些算子支持哪些算子不支持,以及别用Function函数,得用torch.nn里面的层。

官方文档:https://pytorch.org/docs/stable/onnx.html?highlight=onnx#module-torch.onnx

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值