深度强化学习笔记01

深度强化学习笔记01

一 深度强化学习关键字

  1. 强化学习(Reinforcement Learning):Agent可以在与复杂且不确定的Environment进行交互时,尝试使所获得的Reward最大化的计算算法。
  2. Action: Environment接收到的Agent当前状态的输出。
  3. State:Agent从Environment中获取到的状态。
  4. Reward:Agent从Environment中获取的反馈信号,这个信号指定了Agent 在某一步采取了某个策略是否得到奖励。
  5. Exploration:在当前的情况下,继续尝试新的Action,其有可能会使你得到更高的这个奖励,也有可能使你一无所有。
  6. Exploitation:在当前的情况下,继续尝试已知可以获得最大Reward的过程,那你就重复执行这个 Action 就可以了。
  7. 深度强化学习(Deep Reinforcement Learning):不需要手工设计特征,仅需要输入State让系统直接输出Action的一个end-to-end training的强化学习方法。通常使用神经网络来拟合 value function 或 policy network。
  8. Full observability、fully observed和partially observed:当 Agent 的状态跟Environment的状态等价的时候,我们就说现在Environment是full observability(全部可观测),当 Agent 能够观察到Environment的所有状态时,我们称这个环境是fully observed(完全可观测)。一般我们的Agent不能观察到Environment的所有状态时,我们称这个环境是partially observed(部分可观测)。
  9. POMDP(Partially Observable Markov Decision Processes):部分可观测马尔可夫决策过程,即马尔可夫决策过程的泛化。POMDP 依然具有马尔可夫性质,但是假设智能体无法感知环境的状态 ,只能知道部分观测值 。
  10. Action space(discrete action spaces and continuous action spaces):在给定的Environment中,有效动作的集合经常被称为动作空间(Action space),Agent 的动作数量是有限的动作空间为离散动作空间(discrete action spaces),反之,称为连续动作空间(continuous action spaces)。
  11. policy-based(基于策略的):智能体会制定一套动作策略(确定在给定状态下需要采取何种动作),并根据这个策略进行操作。强化学习算法直接对策略进行优化,使制定的策略能够获得最大的奖励。
  12. valued-based(基于价值的):智能体不需要制定显式的策略,它维护一个价值表格或价值函数,并通过这个价值表格或价值函数来选取价值最大的动作。
  13. model-based(有模型结构):Agent通过学习状态的转移来采取措施。
  14. model-free(无模型结构):Agent没有去直接估计状态的转移,也没有得到Environment的具体转移变量。它通过学习 value function 和 policy function 进行决策。

二 深度强化学习知识点

  1. 强化学习的基本结构是什么?
    答:本质上是Agent和Environment间的交互。具体地,当Agent在Environment中得到当前时刻的State,Agent会基于此状态输出一个Action。然后这个Action会加入
    到Environment中去并输出下一个State和当前的这个Action得到的Reward。Agent 在Environment里面存在的目的就是为了极大它的期望积累的Reward。
  2. 强化学习相对于监督学习为什么训练会更加困难?(强化学习的特征)
    答:

2.1 强化学习处理的多是序列数据,其很难像监督学习的样本一样满足IID(独立同分布)条件。

2.2 强化学习有奖励的延迟(Delay Reward),即在Agent的action作用在Environment中时,Environment对于Agent的State的奖励的延迟(Delayed Reward),使得反馈不及时。

2.3 相比于监督学习有正确的label,可以通过其修正自己的预测,强化学习相当于一个“试错”的过程,其完全根据Environment的“反馈”更新对自己最有利的Action。
3. 强化学习的基本特征有哪些?
答:

3.1 有trial-and-error exploration的过程,即需要通过探索Environment来获取对这个Environment的理解。

3.2 强化学习的Agent 会从Environment里面获得延迟的Reward。

3.3 强化学习的训练过程中时间非常重要,因为数据都是有时间关联的,而不是像监督学习一样是IID分布的。

3.4 强化学习中Agent的Action会影响它随后得到的反馈。
4. 近几年强化学习发展迅速的原因?
答:

4.1 算力(GPU、TPU)的提升,我们可以更快地做更多的 trial-and-error 的尝试来使得 Agent 在Environment里面获得很多信息,取得很大的Reward。

4.2 我们有了深度强化学习这样一个端到端的训练方法,可以把特征提取和价值估计或者决策一起优化,这样就可以得到一个更强的决策网络。
5. 状态和观测有什么关系?
答:状态(state)是对世界的完整描述,不会隐藏世界的信息。观测(observation)是对状态的部分描述,可能会遗漏一些信息。在深度强化学习中,我们几乎总
是用一个实值向量、矩阵或者更高阶的张量来表示状态和观测。
6. 对于一个强化学习 Agent,它由什么组成?
答:

6.1 策略函数(policy function),Agent 会用这个函数来选取它下一步的动作,包括随机性策略(stochastic policy)和确定性策略(deterministic policy)。

6.2 价值函数(value function),我们用价值函数来对当前状态进行估价,它就是说你进入现在这个状态,到底可以对你后面的收益带来多大的影响。当这个价值函数大的时候,说明你进入这个状态越有利。

6.3 模型(model),其表示了 Agent 对这个Environment的状态进行的理解,它决定了这个系统是如何进行的。
7. 根据强化学习 Agent 的不同,我们可以将其分为哪几类?
答:

7.1 基于价值函数的Agent。 显式学习的就是价值函数,隐式地学习了它的策略。因为这个策略是从我们学到的价值函数里面推算出来的。

7.2 基于策略的Agent。它直接去学习 policy,就是说你直接给它一个 state,它就会输出这个动作的概率。然后在这个 policy-based agent 里面并没有去学习它的价值函数。

7.3 然后另外还有一种 Agent 是把这两者结合。把 value-based 和 policy-based 结合起来就有了 Actor-Critic agent。这一类 Agent 就把它的策略函数和价值函数都学习了,然后通过两者的交互得到一个最佳的行为。
8. 基于策略迭代和基于价值迭代的强化学习方法有什么区别?
答:基于策略迭代的强化学习方法,智能体会制定一套动作策略(确定在给定状态下需要采取何种动作),并根据这个策略进行操作。强化学习算法直接对策略进行优化,使制定的策略能够获得最大的奖励;基于价值迭代的强化学习方法,智能体不需要制定显式的策略,它维护一个价值表格或价值函数,并通过这个价值表格或价值函数来选取价值最大的动作。基于价值迭代的方法只能应用在不连续的、离散的环境下(如围棋或某些游戏领域),对于行为集合规模庞大、动作连续的场景(如机器人控制领域),其很难学习到较好的结果(此时基于策略迭代的方法能够根据设定的策略来选择连续的动作);基于价值迭代的强化学习算法有 Q-learning、 Sarsa 等,而基于策略迭代的强化学习算法有策略梯度算法等。此外, Actor-Critic 算法同时使用策略和价值评估来做出决策,其中,智能体会根据策略做出动作,而价值函数会对做出的动作给出价值,这样可以在原有的策略梯度算法的基础上加速学习过程,取得更好的效果。
9. 有模型(model-based)学习和免模型(model-free)学习有什么区别?
答:针对是否需要对真实环境建模,强化学习可以分为有模型学习和免模型学习。有模型学习是指根据环境中的经验,构建一个虚拟世界,同时在真实环境和虚拟世界中学习;免模型学习是指不对环境进行建模,直接与真实环境进行交互来学习到最优策略。总的来说,有模型学习相比于免模型学习仅仅多出一个步骤,即对真实环境进行建模。免模型学习通常属于数据驱动型方法,需要大量的采样来估计状态、动作及奖励函数,从而优化动作策略。免模型学习的泛化性要优于有模型学习,原因是有模型学习算需要对真实环境进行建模,并且虚拟世界与真实环境之间可能还有差异,这限制了有模型学习算法的泛化性。
10. 强化学习的通俗理解
答:environment 跟 reward function 不是我们可以控制的,environment 跟 reward function 是在开始学习之前,就已经事先给定的。我们唯一能做的事情是调整 actor里面的 policy,使得 actor 可以得到最大的 reward。Actor 里面会有一个 policy, 这个policy 决定了actor 的行为。Policy 就是给一个外界的输入,然后它会输出 actor现在应该要执行的行为。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值