鲁棒控制——线性矩阵不等式处理(俞立)(1)

第一章 引言

1.1 模型的不确定性

  •  - 描述物理系统的解析模型很难,甚至不可能精确地刻画,因此为了便于处理,不得不简化模型。
  •  - 一个模型,无论多么详细,都不可能是物理系统的一个精确表示。因此模型存在本质的不精确性。

1.2 解决的手段

将一个系统分解成线性部分非线性部分,进而用一个更容易处理和分析的对象来代替这个非线性部分,达到简化目的。

如非线性微分方程(1.1):

\dot x=f(x,u)

y=h(x,u)

初始条件:
x(0),x(t),y(t),u(t)是向量值函数
f,h是光滑的向量值函数

PS.向量值函数:一个函数,其值域是一个线性空间或一个线性空间的子集。

PPS.线性空间:该空间内的向量满足加法和数乘封闭。

将其在原点(x,u)=(0,0)处分解(1.2):

\dot x=Ax+Bu+g(x,u)

y=Cx+Du+r(x,u)

其中:A,B,C,D就是系统的一个线性化近似

A=\frac{\partial f}{\partial x}|_{(x,u)=(0,0)},B=\frac{\partial f}{\partial x}|_{(x,u)=(0,0)},C\frac{\partial h}{\partial u}|_{(x,u)=(0,0)},D=\frac{\partial h}{\partial u}|_{(x,u)=(0,0)}

改写(1.2)成(1.3):

\dot x=Ax+Bu+w_1

y=Cx+Du+w_2

(w_1,w_2)=(g(x,u),r(x,u))

 假设G是(\dot x,y)的映射,G:(w_1,w_2,u)\mapsto (x,u,y)

Q是(w_1,w_2)的映射,Q:(x,u) \mapsto (w_1,w_2)

系统关系图:

其中,G是系统的线性部分,Q是静态的非线性映射,这样就把系统的非线性部分分离出来,归入映射Q中,非线性部分和线性部分通过反馈关联。

为了处理这部分非线性映射Q,人为定义一个集合\Delta来代替它:

集合\Delta有如下性质,对于某个输入pq=Q(p),则存在一个映射\Delta_i \in \Delta,使q=\Delta _i (p)

集合\Delta比函数Q要来的简单的多,它们之间相差的程度确定了用集合\Delta代替非线性映射Q的保守程度。

第二章 线性矩阵不等式

2.1 线性矩阵不等式的一般表示

一个线性矩阵一般式(2.1)

 F(x)=F_0+x_1F_1+...+x_mF_m<0

其中x_1,...,x_m是m个实数变量,称为(2.1)的决策变量,x=(x_1,...,x_m)^T\in R^m,称为决策向量

F_i=F_i^T\in R^{n*n},i=0,1,...,m是一组给定的实对称矩阵

<代表矩阵F(x)是负定的,即对于所有非零向量v \in R^n,v^TF(x)v<0,或者F(x)的最大特征值小于0。

2.2 Schur补性质

在许多将一些非线性矩阵不等式转化为线性矩阵不等式的问题中,常常用到Schur补性质:

这里的矩阵小于0是矩阵负定的意思。

由上述引理2.1.2推导到一般线性矩阵不等式F(x)<0,其中F(x)=\begin{bmatrix} F_{11}(x) & F_{12}(x) \\ F_{21}(x) & F_{22}(x) \end{bmatrix}F_{11}(x)是方阵,则可以应用到Schur补性质

F_{11}(x)<0:

\left\{\begin{matrix} F_{11}(x)<0\\ F_{22}(x)-F_{12}^T(x)F_{11}^{-1}F_{12}(x)<0 \end{matrix}\right.

\left\{\begin{matrix} F_{22}(x)<0\\ F_{11}(x)-F_{12}^T(x)F_{22}^{-1}F_{12}(x)<0 \end{matrix}\right.

对于经典的二次型矩阵不等式:

A^TP+PA+PBR^{-1}B^TP+Q<0

其中,A,B,Q=Q^T,R=R^T>0是常数矩阵,P是对称矩阵

适应Schur补性质(逆用):

\begin{bmatrix} A^TP+PA+Q & PB \\ B^TP & -R \end{bmatrix}<0

就转变成了一个关于矩阵变量P的线性矩阵不等式。

2.3 标准的线性矩阵不等式问题

假定条件F、G、H是对称的矩阵值仿射函数,c是一个给定的参数向量。

1.可行性问题(LMIP)

对给定的线性矩阵不等式F(x)<0,检验是否存在x,使其成立,若x存在,改线性矩阵不等式的问题就是可行的。

2.特征值问题(EVP)

在一个线性矩阵不等式约束下,求矩阵G(x)的最大特征值最小化问题或确定问题的约束的可行的。

一般形式:

min \lambda

s.t. G(x)<\lambda I

H(x)<0

但是少见,更多的是以下的等价问题:

min c^Tx

s.t. F(x)<0

3.广义特征值问题(GEVP)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值