第一章 引言
1.1 模型的不确定性
- - 描述物理系统的解析模型很难,甚至不可能精确地刻画,因此为了便于处理,不得不简化模型。
- - 一个模型,无论多么详细,都不可能是物理系统的一个精确表示。因此模型存在本质的不精确性。
1.2 解决的手段
将一个系统分解成线性部分和非线性部分,进而用一个更容易处理和分析的对象来代替这个非线性部分,达到简化目的。
如非线性微分方程(1.1):
初始条件:是向量值函数
是光滑的向量值函数
PS.向量值函数:一个函数,其值域是一个线性空间或一个线性空间的子集。
PPS.线性空间:该空间内的向量满足加法和数乘封闭。
将其在原点处分解(1.2):
其中:就是系统的一个线性化近似
改写(1.2)成(1.3):
假设G是的映射,
Q是的映射,
系统关系图:
其中,G是系统的线性部分,Q是静态的非线性映射,这样就把系统的非线性部分分离出来,归入映射Q中,非线性部分和线性部分通过反馈关联。
为了处理这部分非线性映射Q,人为定义一个集合来代替它:
集合有如下性质,对于某个输入
,
,则存在一个映射
,使
集合比函数Q要来的简单的多,它们之间相差的程度确定了用集合
代替非线性映射Q的保守程度。
第二章 线性矩阵不等式
2.1 线性矩阵不等式的一般表示
一个线性矩阵一般式(2.1)
其中是m个实数变量,称为(2.1)的决策变量,
,称为决策向量
是一组给定的实对称矩阵
<代表矩阵是负定的,即对于所有非零向量
,
,或者
的最大特征值小于0。
2.2 Schur补性质
在许多将一些非线性矩阵不等式转化为线性矩阵不等式的问题中,常常用到Schur补性质:
这里的矩阵小于0是矩阵负定的意思。
由上述引理2.1.2推导到一般线性矩阵不等式,其中
,
是方阵,则可以应用到Schur补性质
当:
或
对于经典的二次型矩阵不等式:
其中,是常数矩阵,P是对称矩阵
适应Schur补性质(逆用):
就转变成了一个关于矩阵变量P的线性矩阵不等式。
2.3 标准的线性矩阵不等式问题
假定条件F、G、H是对称的矩阵值仿射函数,c是一个给定的参数向量。
1.可行性问题(LMIP)
对给定的线性矩阵不等式,检验是否存在x,使其成立,若x存在,改线性矩阵不等式的问题就是可行的。
2.特征值问题(EVP)
在一个线性矩阵不等式约束下,求矩阵G(x)的最大特征值最小化问题或确定问题的约束的可行的。
一般形式:
但是少见,更多的是以下的等价问题:
3.广义特征值问题(GEVP)
略