随着云计算、大数据、5G 和物联网技术的普及,人工智能也在加速发展,大众对于人脸识别、视频监控、工业质检、远程维护等AI应用场景也算得上耳熟能详。但事实上,AI 发展远非一帆风顺,其落地之路一直是荆棘丛生。
首先,如何在海量数据中构建更高效的数据集,从而在更短时间内获得更好的训练效果是一大挑战。
其次,人工智能技术本身的赋能属性会使其和业务场景深度深度结合,如何基于场景加速 AI 模型的构建是关键。
再者,较大的模型才有可能获得较好的准确度,但大模型往往也对硬件的算力提出了更高的技术要求。
还有,如何通过软硬件协同优化加速 AI 部署,也是影响 AI 大规模落地的要义。
从中不难窥见,围绕着“数据、算法、算力”三要素,人工智能应用开发的整个过程可以说环环相扣。
无论是数据处理,还是建模、训练,抑或部署,针对每个具体步骤进行细节优化,才有可能真正突破瓶颈,加速 AI 落地。当然这一切都离不开底层技术供应商的支持。
在日前举行的英特尔 On 技术创新峰会上,英特尔基于一系列创新发布向大众描绘了一张“AI Everywhere”的愿景图。英特尔在开发者生态系统、工具、技术和开放平台上的深度投资,正在为人工智能的普及扫清道路。