分类——决策树ID3与C4.5以及Python实现

决策树算法是一个分类算法,ID3以及C4.5决策树是多叉树。

核心思想:根据特征及对应特征值组成元组为切分点切分样本空间。

基本概念:

熵(entropy):该词最初来自于热力学,用来表示系统的混乱程度。香农借用该词表示一个随机过程的不确定性程度,即香农熵。式中Pi指随机变量取某个值的概率。

条件熵(conditional entropy):给定一个划分数据的条件X=x,那么随机变量Y的随机程度将下降。正如一个热力学系统,在外力做功的情况下,系统熵下降。下降后的熵就是基于条件X=x的条件熵。

实际计算,就是根据特征Y的取值将数据集划分成若干子数据集,分别计算子数据集的熵,然后以子数据集占比为权重求平均值。

信息增益(information gain):加入限制条件后,信息的随机性减少程度。即划分前的熵与条件熵的差。特征X对数据集D的信息增益为:

       由公式可知,计算条件熵时,特征X若取值较多,那么数据划分更细,则条件熵偏向于减小,极端情况下,每个样本都是独一无二的,那么条件熵为0。信息增益就偏向于取值多的特征,进行更多的划分,故引入信息增益比。

信息增益比(informationgain ratio):

其中,n就是特征X不同取值的个数,也即子数据集的个数。分母是数据集自身划分引起的熵变。显然,划分越多,熵越大。

 优点:

1. 容易解释,可视化。模型是“白箱”

2. 无需过多数据准备

3. 预测过程时间复杂度为log(n)

4. 能够处理连续以及离散值

5. 能够很好处理多分类问题

缺点:

1. 容易过拟合。可通过剪枝等方法减轻

2. 稳定性差。可通过集成学习改进

3. 学习过程是一个NP完全问题

4. 模型不能表示XOR等概念

5. 对类不平衡样本集敏感

算法流程:

Input: 阈值epsilon, 训练数据集X, y

Output: 决策树

  • Step1:初始化,构建特征集及空树。
  • Step2:递归构建决策树。

                  参数:特征集,子训练数据集X_data, y_data

                  递归终止条件:

                   1.集只有一个类,返回该类

                   2.特征集为空,返回最频繁的类

                   3.切分数据集前后,信息增益(比)小于epsilon

                  树的构建流程:

                  1. 计算每个特征的信息增益(比),以及切分的子数据集的索引。

                  2. 选取信息增益(比)最大的特征为最优特征,构建当前节点。

                  3. 从特征集中去除当前最优特征,并对相应的子数据集分别进行步骤1、2构建子树。

  • Step3: 运用构建好的决策树进行预测。递归搜索树,碰到叶节点则返回类标记。
"""
ID3&C4.5决策树算法
"""
import math
from collections import Counter, defaultdict

import numpy as np


class node:
    # 这里构建树的节点类,也可用字典来表示树结构
    def __init__(self, fea=-1, res=None, child=None):
        self.fea = fea
        self.res = res
        self.child = child  # 特征的每个值对应一颗子树,特征值为键,相应子树为值


class DecisionTree:
    def __init__(self, epsilon=1e-3, metric='C4.5'):
        self.epsilon = epsilon
        self.tree = None
        self.metric = metric

    def exp_ent(self, y_data):
        # 计算经验熵
        c = Counter(y_data)  # 统计各个类标记的个数
        ent = 0
        N = len(y_data)
        for val in c.values():
            p = val / N
            ent += -p * math.log2(p)
        return ent

    def con_ent(self, fea, X_data, y_data):
        # 计算条件熵并返回,同时返回切分后的各个子数据集
        fea_val_unique = Counter(X_data[:, fea])
        subdata_inds = defaultdict(list)  # 根据特征fea下的值切分数据集
        for ind, sample in enumerate(X_data):
            subdata_inds[sample[fea]].append(ind)  # 挑选某个值对应的所有样本点的索引

        ent = 0
        N = len(y_data)
        for key, val in fea_val_unique.items():
            pi = val / N
            ent += pi * self.exp_ent(y_data[subdata_inds[key]])
        return ent, subdata_inds

    def infoGain(self, fea, X_data, y_data):
        # 计算信息增益
        exp_ent = self.exp_ent(y_data)
        con_ent, subdata_inds = self.con_ent(fea, X_data, y_data)
        return exp_ent - con_ent, subdata_inds

    def infoGainRatio(self, fea, X_data, y_data):
        # 计算信息增益比
        g, subdata_inds = self.infoGain(fea, X_data, y_data)
        N = len(y_data)
        split_info = 0
        for val in subdata_inds.values():
            p = len(val) / N
            split_info -= p * math.log2(p)
        return g / split_info, subdata_inds

    def bestfea(self, fea_list, X_data, y_data):
        # 获取最优切分特征、相应的信息增益(比)以及切分后的子数据集
        score_func = self.infoGainRatio
        if self.metric == 'ID3':
            score_func = self.infoGain
        bestfea = fea_list[0]  # 初始化最优特征
        gmax, bestsubdata_inds = score_func(bestfea, X_data, y_data)  # 初始化最大信息增益及切分后的子数据集
        for fea in fea_list[1:]:
            g, subdata_inds = score_func(fea, X_data, y_data)
            if g > gmax:
                bestfea = fea
                bestsubdata_inds = subdata_inds
                gmax = g
        return gmax, bestfea, bestsubdata_inds

    def buildTree(self, fea_list, X_data, y_data):
        # 递归构建树
        label_unique = np.unique(y_data)
        if label_unique.shape[0] == 1:  # 数据集只有一个类,直接返回该类
            return node(res=label_unique[0])
        if not fea_list:
            return node(res=Counter(y_data).most_common(1)[0][0])
        gmax, bestfea, bestsubdata_inds = self.bestfea(fea_list, X_data, y_data)
        if gmax < self.epsilon:  # 信息增益比小于阈值,返回数据集中出现最多的类
            return node(res=Counter(y_data).most_common(1)[0][0])
        else:
            fea_list.remove(bestfea)
            child = {}
            for key, val in bestsubdata_inds.items():
                child[key] = self.buildTree(fea_list, X_data[val], y_data[val])
            return node(fea=bestfea, child=child)

    def fit(self, X_data, y_data):
        fea_list = list(range(X_data.shape[1]))
        self.tree = self.buildTree(fea_list, X_data, y_data)
        return

    def predict(self, X):
        def helper(X, tree):
            if tree.res is not None:  # 表明到达叶节点
                return tree.res
            else:
                try:
                    sub_tree = tree.child[X[tree.fea]]
                    return helper(X, sub_tree)  # 根据对应特征下的值返回相应的子树
                except:
                    print('input data is out of scope')

        return helper(X, self.tree)


if __name__ == '__main__':
    import time

    start = time.clock()
    data = np.array([['青年', '青年', '青年', '青年', '青年', '中年', '中年',
                      '中年', '中年', '中年', '老年', '老年', '老年', '老年', '老年'],
                     ['否', '否', '是', '是', '否', '否', '否', '是', '否',
                      '否', '否', '否', '是', '是', '否'],
                     ['否', '否', '否', '是', '否', '否', '否', '是',
                      '是', '是', '是', '是', '否', '否', '否'],
                     ['一般', '好', '好', '一般', '一般', '一般', '好', '好',
                      '非常好', '非常好', '非常好', '好', '好', '非常好', '一般'],
                     ['否', '否', '是', '是', '否', '否', '否', '是', '是',
                      '是', '是', '是', '是', '是', '否']])
    data = data.T
    X_data = data[:, :-1]
    y_data = data[:, -1]

    from machine_learning_algorithm.cross_validation import validate
    g = validate(X_data, y_data, ratio=0.2)
    for item in g:
        X_data_train, y_data_train, X_data_test, y_data_test = item
        clf = DecisionTree()
        clf.fit(X_data_train, y_data_train)
        score = 0
        for X, y in zip(X_data_test,y_data_test):
            if clf.predict(X) == y:
                score += 1
        print(score / len(y_data_test))
    print(time.clock() - start)

我的GitHub
注:如有不当之处,请指正。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值