Pyspark使用笔记

本博客记录了学习Pyspark的笔记。Pyspark是Spark的Python接口。

Pyspark结构

整个程序由11个公共类加4个模块组成。如下图所示:
spark架构图

  • SparkContext: 集群功能入口
  • RDD: 弹性分布式数据集(基本抽象类)
  • Broadcast: 广播变量,跨task共享变量
  • Accumulator: 累加器,仅可累加的的共享变量
  • SparkConf: 配置Spark环境
  • Sparkfiles: 提供获取集群文件的抽象类方法
  • StorageLevel: 控制持久化等级
  • Taskcontext: 获取当前运行任务的信息
  • 基于barrier类:提供barrier execution方式,便于将Spark与MPI分布式机器学习作业有机结合起来

RDD

RDD是一组不可变的JVM(java虚拟机)对象的分布集,是一种无schema的数据结构,因此几乎可以混合使用任何结构的数据来创建RDD。
一个Spark应用可以简单理解为对RDD的一系列操作,Spark内置了很多算子,以实现对RDD的操作,通常可分为transformation以及action算子。transformation算子并不立即执行,一旦碰到action算子才真正开始计算,因此针对RDD的操作是惰性的(参考博文)。

###################RDD操作示例###################
from pyspark import SparkConf, SparkContext

conf = SparkConf().setAppName('TEST').setMaster('local')  # 创建配置
sc = SparkContext(conf=conf)  # 创建Spark环境
# data_rdd = sc.parallelize(['a', 'b', 'c', 'd'])  # 根据list,array创建RDD
# 读取文件系统中的文件,创建RDD, 逐行读取,每行相当于list中的一个元素,第二个参数为分区个数
data_rdd = sc.textFile(r'.\learningPySpark-master\Data\airport-codes-na.txt', 4)
data_map = data_rdd.map(lambda row: row.split('\t'))  # map函数相当于一个转换器,对RDD中每个元素进行转换操作
data_filter = data_map.filter(lambda row: row[2] == "USA")  # 根据要求筛选数据
data_flatmap = data_rdd.map(lambda row: row.split('\t'))  # flat意思就是多维转一维,所有行合并成一行
res_dis = data_map.map(lambda row: row[2]).distinct().collect()  # distinct去重
data_sample = data_flatmap.sample(True, 0.02)  # 随机抽取一定比例(不严格)的样本,True代表有放回

SQL & DataFrame

Pyspark中的DataFrame是一种被组织成列的不可变分布式数据集。通过在分布式数据集上施加结构,spark用户能够采用类似操作Pandas中DataFrame的方式或SQL方式对分布式数据进行操作。值得注意的是,Pyspark中的DataFrame虽然与Pandas中的近似,但其存储方式悬殊,要操作数据还得采用Pyspark的方法,也可以用toPandas()转化为Pandas中的DataFrame再用Pandas方法操作数据。
关于Pyspark中对DataFrame的操作需要注意几点:

  1. Pyspark中DataFrame不可变,故不像Pandas中有inplace参数,换句话说其inplace只能是False
  2. 函数的操作虽大部分与Pandas相似,但某些时候更像Pandas与SQL的结合体,比如select的使用
  3. 若要使用SQL语句,需提前根据DataFrame建立表或视图,并注册函数
###################Spark SQL与 DataFame ###################
from pyspark.sql import SparkSession, Row
from pyspark.sql.types import *
from pyspark.sql import functions as F

# 创建SQL及DataFrame功能入口
spark = SparkSession.builder.master("local").appName("Word Count") \
    .config(conf=SparkConf()) \
    .getOrCreate()

# 本地直接创建DataFrame
df1 = spark.createDataFrame([('Eric', 25), ('Alice', 21)], schema=['name', 'age']).collect()  # 根据list或dict创建

df_rdd = spark.sparkContext.parallelize([('Eric', 25), ('Alice', 21)])
schema = StructType([StructField("name", StringType(), True), StructField("age", IntegerType(), True)])
df2 = spark.createDataFrame(df_rdd, schema=schema).collect()  # 根据RDD创建并指定字段数据类型

Person = Row('name', 'age')
person = df_rdd.map(lambda r: Person(*r))  # 将RDD内每个元素转化为Row实例
df3 = spark.createDataFrame(person)

# 读取源数据创建DataFrame
df_jdbc = spark.read.jdbc(url="jdbc:mysql://***.***.***.***:3306/test",
                          table='titanic_test',
                          properties={'user': '***', 'password': '***'})  # 读取mysql数据库表
df_parquet = spark.read.parquet()  # 读取parquet格式的数据, 同理可读取csv,json, text, table, schema文件
df_json = spark.read.format('json').load()  # 或采用load方法

# DataFrame持久化
df1.write.json()
df1.write.format('parquet').save()  # 保存的文件是一个不可修改的文件夹

# DataFrame操作,操作函数名大部分与Pandas相同,以下列举部分不相同的操作函数
df_jdbc.describe().show()  # 简单统计
df_jdbc.select(['Pclass', 'Age']).show()  # 列索引
df_jdbc.filter(df_jdbc['Sex'] == 'male').show()  # 行筛选(没有索引切片操作)
df_jdbc.sort(df_jdbc['Pclass'].desc(), df_jdbc['Age'].asc()).show()  # 排序
df_jdbc.agg({'Name': 'count', 'Age': 'mean'}).collect()  # 聚合操作
df_jdbc.withColumn('FamilySize', df_jdbc['SibSp'] + df_jdbc['Parch'])  # 添加新列
df_jdbc.withColumnRenamed('Pclass', 'class')  # 重命名列名
df_jdbc_alias = df_jdbc.alias('df_jdbc_alias')  # 返回新的DataFrame,并重命名,相当于复制
df_jdbc.toDF()  # 数据类型转化操作,还有toJson等。也可以用来全部重命名列名
df_jdbc.select(F.split(df_jdbc['Name'])[0]).show(3)  # 对单列施加函数操作

# sql操作,需要先创建表或视图
df_jdbc.createGlobalTempView('titanic')  # 创建全局临时视图(持续到应用结束), createTempView则持续SparkSession结束
df_jdbc.registerTempTable('titanic_temp')  # 创建临时表,其生命周期与createTempView相同
df_table = spark.sql('select * from global_temp.titanic')
spark.udf.register('strlen', lambda s: len(s))  # 注册自定义函数,以便使用sql语句
spark.sql('select strlen(Name) from global_temp.titanic').collect()

提交任务

通常在本地测试后,就要提交到集群中去,需要注意以下几点:

  1. 注明编码方式
  2. 采用spark-submit提交任务时,命令行参数将覆盖程序内的参数
    WordCount.py示例如下:
#!/usr/bin/python
# _*_ coding: utf-8 _*_


from pyspark import SparkContext, SparkConf
import sys


def run(input_path):
    conf = SparkConf().setMaster("spark://127.0.0.1:7077").set("spark.executor.memory", "1g")
    sc = SparkContext(conf=conf)
    rdd = sc.textFile(input_path)
    rdd_map = rdd.flatMap(lambda x: x.split('\t')).map(lambda x: (x, 1))
    rdd_red = rdd_map.reduceByKey(lambda x, y: x + y).sortBy(lambda x: x[1], False)
    print(rdd_red.collect())
    sc.stop()
    return


if __name__ == "__main__":
    input_path = sys.argv[1]
    run(input_path)

# 提交到yarn集群: spark-submit --master yarn WordCount.py hdfs:///user/slx/airport-codes-na.txt

参考资料

Pyspark官方参考文档
Spark中与Pandas中DataFrame的对比
Spark Overview

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值