leetecode 673 动态有感

博主分享了在解决leetecode 673题目时,尝试使用动态规划的方法。最初的状态方程为dp[i][k] += dp[j][k-1] (nums[i]>nums[j], 0<=j<i),但该方案导致了超时。通过研究官方的动态规划解决方案,博主发现可以用两个一维数组实现相同逻辑,从而节省了空间,体会到了空间优化的重要性。" 111532066,10324693,数学分析:区间套定理与缠论的应用解析,"['数学分析', '区间套', '缠论', '函数', '递归']
摘要由CSDN通过智能技术生成

leetecode 673

在这里插入图片描述

看到标签是动态规划就自己想了个状态方程
dp[i][k] += dp[j][k-1] if(nums[i]>nums[j],0<=j<i)

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int[][] dp =new int[nums.length+1][nums.length+1];
        for(int i=0;i<nums.length;i++){
            dp[i][1] = 1;
        }
        int res = 0;
        int maxK = 1;
        for(int i=0;i<nums.length;i++){
            for(int k=1;k<=i+1;k++){
                if(dp[i][k] != 0) maxK = Math.max(maxK,k);
                for(int j=0;j<i;j++){
                    if(nums[i] > nums[j] && j>=k-2){
                        dp[i][k] += dp[j][k-1];
                        if(dp[i][k] != 0) maxK = Math.max(maxK,k);
                    }
                }
            }
        }
        for(int i=maxK-1;i<nums.length;i++){
            res += dp[i][maxK];
        }
        return res;
    }
}

这是我写的代码,运行后发现超时。
看了下官方解答的动态规划,发现是用两个一维数组实现了我上述的想法,这难道就是空间换时间??

class Solution {
    public int findNumberOfLIS(int[] nums) {
        //原本我的状态方程是dp[i][k] += dp[j][k-1] if(nums[i]>nums[j])
        int N = nums.length;
        if (N <= 1) return N;
        int[] lengths = new int[N]; //lengths[i] = length of longest ending in nums[i]
        int[] counts = new int[N]; //count[i] = number of longest ending in nums[i]
        Arrays.fill(counts, 1);

        for (int j = 0; j < N; ++j) {
            for (int i = 0; i < j; ++i) if (nums[i] < nums[j]) {
                if (lengths[i] >= lengths[j]) {
                    lengths[j] = lengths[i] + 1;
                    counts[j] = counts[i];
                } else if (lengths[i] + 1 == lengths[j]) {
                    counts[j] += counts[i];
                }
                
            }
            System.out.println(lengths[j]);
        }

        int longest = 0, ans = 0;
        for (int length: lengths) {
            longest = Math.max(longest, length);
        }
        for (int i = 0; i < N; ++i) {
            if (lengths[i] == longest) {
                ans += counts[i];
            }
        }
        return ans;
    }
}

学到了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值