题目
你这学习需要学习 numCourses 门课程,编号记为 0 到 numCourses - 1。
在选修某些课程之前你需要完成一些必修课程。先修课程按 prerequisites 给出关系,如 prerequisites[i] = [a_i, b_i],表示在选修 a_i 之前需要先完成 b_i。
请判断你最终能否完成所有课程。
示例1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
原题链接: https://leetcode.cn/problems/course-schedule/
思路
该题是一道经典的拓扑排序题目。
拓扑排序的定义是:给定一个有 n 个节点的有向图 G,对于节点进行一种编号排列,如果满足,对于任意的有向边 (u, v) 都满足 u 在 v 的前面,则这一种排列是 G 的一种拓扑排序。
对于这道题,只需要判断能否完成课程,而不需要给出具体的上课顺序,也即拓扑排序。降低了难度。
我们利用 prerequisites 来构造图,并判断这是否是一个有向无环图 DAG 即可。
思路1
bfs。
首先利用一个数组来记录有向边,再利用一个数组来记录节点的入度。
然后开始遍历入度为 0 的课程,即没有先修课程 的课程。并将相邻节点的入度 -1。
然后重复上面的步骤,直到所有课程都遍历完成为止。
我们利用一个 count 来记录已遍历的课程,如果所有课程都遍历完成,则说明图中无环,可修完所有课程;反之则完成不了。
节点的遍历过程就是一个拓扑排序。
- 复杂度分析
- 时间复杂度 O(n+e)。图的bfs遍历,n 个节点,e 条边。
- 空间复杂度 O(n+e)。
思路2
dfs。
我们利用一个 visited 数组来辅助我们的遍历。
visited 记录三种状态:
0: 表示未搜索
1: 表示搜索中
2: 表示相邻节点已搜索完成
如果在搜索的过程中,遇到环的话,则说明不符合要求,返回 false 即可。
如果需要记录具体的拓扑排序的话,我们只需要依次把 状态2 的节点入栈,则表示排在后面的节点。
- 复杂度分析
- 时间复杂度 O(n+e)。
- 空间复杂度 O(n+e)。
代码
代码1
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> edges(numCourses, vector<int>());
vector<int> indegrees(numCourses, 0);
int count = 0;
for (int i = 0; i < prerequisites.size(); i++) {
int v = prerequisites[i][0];
int u = prerequisites[i][1];
edges[u].push_back(v);
indegrees[v]++;
}
queue<int> q;
for (int i = 0; i < indegrees.size(); i++) {
if (indegrees[i] == 0) {
q.push(i);
}
}
while(!q.empty()) {
int u = q.front();
q.pop();
count++;
for (int i = 0; i < edges[u].size(); i++) {
int v = edges[u][i];
indegrees[v]--;
if (indegrees[v] == 0) {
q.push(v);
}
}
}
return count == numCourses;
}
};
代码2
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> edges(numCourses, vector<int>());
vector<int> visited(numCourses, 0);
bool result = true;
for (int i = 0; i < prerequisites.size(); i++) {
int v = prerequisites[i][0];
int u = prerequisites[i][1];
edges[u].push_back(v);
}
for (int i = 0; i < numCourses; i++) {
if (visited[i] == 0) {
dfs(i, edges, visited, result);
}
if (result == false) {
break;
}
}
return result;
}
void dfs(int u, vector<vector<int>>& edges, vector<int>& visited, bool& result) {
visited[u] = 1;
for (int& v: edges[u]) {
if (visited[v] == 0) {
dfs(v, edges, visited, result);
}
else if (visited[v] == 1) {
result = false;
return;
}
}
visited[u] = 2;
}
};