学习笔记: 源码 softmax_layer.cpp 略通

SoftmaxLayer

1. softmax 的数学公式如下:



所以,softmax 的输入和输出的 blob 形状大小是一样的。

2. forward()
template <typename Dtype>
void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  Dtype* scale_data = scale_.mutable_cpu_data();
  int channels = bottom[0]->shape(softmax_axis_);
  int dim = bottom[0]->count() / outer_num_;
  caffe_copy(bottom[0]->count(), bottom_data, top_data); //先将bottom_data拷贝到top_data,方便后续计算
  // We need to subtract the max to avoid numerical issues, compute the exp, 为了避免指数爆炸问题,首先用scale_data[0](假设inner_num_=1) 来记录每个样本所有channel 上的最大值
  // and then normalize.
  for (int i = 0; i < outer_num_; ++i) {
    // initialize scale_data to the first plane
    caffe_copy(inner_num_, bottom_data + i * dim, scale_data);
    for (int j = 0; j < channels; j++) {
      for (int k = 0; k < inner_num_; k++) {
        scale_data[k] = std::max(scale_data[k],
            bottom_data[i * dim + j * inner_num_ + k]);
      }
    }
    // subtraction 先实现top_data = bottom_data - max(bottom_data)
    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
        1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);
    // exponentiation 再求exp(top_data)
    caffe_exp<Dtype>(dim, top_data, top_data);
    // sum after exp 然后计算用于归一化的分母记录于 scale_data,利用gemv 计算
    caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,
        top_data, sum_multiplier_.cpu_data(), 0., scale_data);
    // division 最后是归一化, top_data = top_data / scale_data
    for (int j = 0; j < channels; j++) {
      caffe_div(inner_num_, top_data, scale_data, top_data);
      top_data += inner_num_;
    }
  }
}

为什么要防止指数爆炸? 为什么会指数爆炸?
因为bottom_data的值是 θ 和 x 的内积,可能值很大,如果直接求exp的话,我们知道,指数函数的正半轴的增长很快,那么求得的 top_data = exp(bottom_data) 可能会溢出。就算没有溢出,这时候的 top_data 也会很大。那么我们在计算用于归一化的分母项的时候,累计结果也会很大,则存在溢出的可能。

防止指数爆炸的原理:


根据上图可以知道,
exp( bottom_data - max(bottom_data) ) 等价于 exp(bottom_data) / exp(max(bottom_data))。
且不影响求h(x) 的结果。
这时候,我们先把bottom_data - max(bottom_data) 后,各项都小于等于0,那么再求exp 的时候,top_data 都是小于等于 1 的值。这时候再对top_data进行归一化,则不会存在指数爆炸,不存在溢出的可能性。

3. backward()
template <typename Dtype>
void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  const Dtype* top_diff = top[0]->cpu_diff();
  const Dtype* top_data = top[0]->cpu_data();
  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  Dtype* scale_data = scale_.mutable_cpu_data();
  int channels = top[0]->shape(softmax_axis_);
  int dim = top[0]->count() / outer_num_;
  caffe_copy(top[0]->count(), top_diff, bottom_diff);  //先将 top_diff 拷贝到bottom_diff,方便后续计算
  for (int i = 0; i < outer_num_; ++i) {
    // compute dot(top_diff, top_data) and subtract them from the bottom diff
    for (int k = 0; k < inner_num_; ++k) {
      scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,   // 求bottom_diff (实际指top_diff) 和top_data 的内积
          bottom_diff + i * dim + k, inner_num_,
          top_data + i * dim + k, inner_num_);
    }
    // subtraction 这里是 top_diff 减去 内积
    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,
        -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);
  }
  // elementwise multiplication  上面的结果 和 top_data 进行点乘得到最终的 bottom_diff
  caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);
}

关于softmax 的后向传播公式推导,可以看下图:


caffe 里的代码如何对应上面的公式呢?大家看上图中最下面的式子, 实现该公式 caffe 中主要有以下三步:
 scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels, 
          bottom_diff + i * dim + k, inner_num_,
          top_data + i * dim + k, inner_num_);
    }
这里对应于括号里减号右边一项,求的是一个 top_diff 和 top_data 的内积。
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,
        -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);
这里对应括号中相减的过程。
caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);
这里对应括号中的计算结果与 top_data 的点乘。

关于 caffe_cpu_strided_dot()、caffe_mul()、caffe_cpu_gemm() 等的介绍,可以参考这个博客:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值