一.简介
Numpy的英文全称为 Numerical Python,意味 Python 面向数值计算的第三方库。NumPy 的特点在于,针对 Python 内建的数组类型做了扩充,支持更高维度的数组和矩阵运算,以及更丰富的数学函数。
NumPy 是 Scipy.org 中最重要的库之一,它同时也被 Pandas,Matplotlib 等我们熟知的第三方库作为核心计算库。当你在单独安装这些库时,你会发现同时会安装 NumPy 作为依赖
二 数值类型
Python 本身支持的数值类型有 int(整型,Python 2 中存在 long 长整型)、float(浮点型)、bool(布尔型) 和 complex(复数型)。
NumPy 支持比 Python 本身更为丰富的数值类型,细分如下:
上面提到的这些数值类型都被归于 dtype(data-type) 对象的实例。 我们可以用 numpy.dtype(object, align, copy) 来指定数值类型。而在数组里面,可以用 dtype= 参数。
三 实战
3.1 导入
import numpy as np # 导入 NumPy 模块
a = np.array([1.1, 2.2, 3.3], dtype=np.float64) # 指定 1 维数组的数值类型为 float64
a, a.dtype # 查看 a 及 dtype 类型
output:
(array([1.1, 2.2, 3.3]), dtype('float64'))
3.2 数组
在 Python 内建对象中,数组有三种形式:
- 列表:[1, 2, 3]
- 元组:(1, 2, 3, 4, 5)
- 字典:{A:1, B:2}
其中,元组与列表相似,不同之处在于元组的元素不能修改。而字典由键和值构成。python 标准类针对数组的处理局限于 1维,并仅提供少量的功能。而 NumPy 最核心且最重要的一个特性就是 ndarray 多维数组对象,它区别于 Python的标准类,拥有对高维数组的处理能力,这也是数值计算过程中缺一不可的重要特性。
NumPy 中,ndarray 类具有六个参数,它们分别为:
- shape:数组的形状。
- dtype:数据类型。
- buffer:对象暴露缓冲区接口。
- offset:数组数据的偏移量。
- strides:数据步长。
- order:{‘C’,‘F’},以行或列为主排列顺序。
在 NumPy 中,我们主要通过以下 5 种途径创建数组,它们分别是:
- 从 Python 数组结构列表,元组等转换。
- 使用 np.arange、np.ones、np.zeros 等 NumPy 原生方法。
- 从存储空间读取数组。
- 通过使用字符串或缓冲区从原始字节创建数组。
- 使用特殊函数,如 random。
3.2.1 列表或元组转换
使用 numpy.array 将列表或元组转换为 ndarray 数组
numpy.array(object, dtype=None, copy=True, order=None, subok=False,
ndmin=0)
object:列表、元组等。
dtype:数据类型。如果未给出,则类型为被保存对象所需的最小类型。
copy:布尔类型,默认 True,表示复制对象。
order:顺序。
subok:布尔类型,表示子类是否被传递。
ndmin:生成的数组应具有的最小维数。
np.array([[1, 2, 3], [4, 5, 6]])
output:
array([[1, 2, 3],
[4, 5, 6]])
np.array([(1, 2), (3, 4), (5, 6)])
output:
array([[1, 2],
[3, 4],
[5, 6]])
3.2.2 原生方法创建
arange方法
numpy.arange(start, stop, step, dtype=None)
设置值所在的区间 [开始, 停止),这是一个半开半闭区间。然后,在设置 step 步长用于设置值之间的间隔。最后的可选参数 dtype可以设置返回ndarray 的值类型。
# 在区间 [3, 7) 中以 0.5 为步长新建数组
np.arange(3, 7, 0.5, dtype='float32')
output:
array([3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5], dtype=float32)
linspace方法
linspace 用于在指定的区间内返回间隔均匀的值。
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None)
start:序列的起始值。
stop:序列的结束值。
num:生成的样本数。默认值为50。
endpoint:布尔值,如果为真,则最后一个样本包含在序列内。
retstep:布尔值,如果为真,返回间距。
dtype:数组的类型。
np.linspace(0, 10, 10, endpoint=True)
output:
array([ 0. , 1.11111111, 2.22222222, 3.33333333, 4.44444444,
5.55555556, 6.66666667, 7.77777778, 8.88888889, 10. ])
np.linspace(0, 10, 10, endpoint=False)
output:
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
ones 方法
numpy.ones 用于快速创建数值全部为 1 的多维数组。其方法如下:
numpy.ones(shape, dtype=None, order=‘C’)
shape:用于指定数组形状,例如(1, 2)或 3。
dtype:数据类型。
order:{‘C’,‘F’},按行或列方式储存数组。
np.ones((2, 3))
output:
array([[1., 1., 1.],
[1., 1., 1.]])
zeros 方法
zeros 方法和上面的 ones 方法非常相似,不同的地方在于,这里全部填充为 0
numpy.zeros(shape, dtype=None, order=‘C’)
np.zeros((3, 2))
output:
array([[0., 0.],
[0., 0.],
[0., 0.]])
eye 方法
numpy.eye 用于创建一个二维数组,其特点是k 对角线上的值为 1,其余值全部为0。
numpy.eye(N, M=None, k=0, dtype=<type ‘float’>)
N:输出数组的行数。
M:输出数组的列数。
k:对角线索引:0(默认)是指主对角线,正值是指上对角线,负值是指下对角线。
np.eye(5, 4, 3)
output:
array([[0., 0., 0., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
3.2.3 从已知数据创建
NumPy 提供了下面 5 个方法:
- frombuffer(buffer):将缓冲区转换为 1 维数组。
- fromfile(file,dtype,count,sep):从文本或二进制文件中构建多维数组。
- fromfunction(function,shape):通过函数返回值来创建多维数组。
- fromiter(iterable,dtype,count):从可迭代对象创建 1 维数组。
- fromstring(string,dtype,count,sep):从字符串中创建 1 维数组。
np.fromfunction(lambda a, b: a + b, (5, 4))
array([[0., 1., 2., 3.],
[1., 2., 3., 4.],
[2., 3., 4., 5.],
[3., 4., 5., 6.],
[4., 5., 6., 7.]])
3.2.4 数组属性
ndarray.T 用于数组的转置,与 .transpose() 相同。
ndarray.dtype 用来输出数组包含元素的数据类型。
ndarray.imag 用来输出数组包含元素的虚部。
ndarray.real用来输出数组包含元素的实部。
ndarray.size用来输出数组中的总包含元素数。
ndarray.itemsize输出一个数组元素的字节数。
ndarray.nbytes用来输出数组的元素总字节数。
ndarray.ndim用来输出数组维度。
ndarray.shape用来输出数组形状。
ndarray.strides用来遍历数组时,输出每个维度中步进的字节数组。
3.2.5 数组基本操作
重设形状
numpy.reshape(a, newshape)
其中,a 表示原数组,newshape 用于指定新的形状(整数或者元组)。
np.arange(10).reshape((5, 2))
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
数组展开
ravel 的目的是将任意形状的数组扁平化,变为 1 维数组
numpy.ravel(a, order=‘C’)
其中,a 表示需要处理的数组。order 表示变换时的读取顺序,默认是按照行依次读取,当 order=‘F’ 时,可以按列依次读取排序。
a = np.arange(10).reshape((2, 5))
np.ravel(a)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
轴移动
moveaxis 可以将数组的轴移动到新的位置。其方法如下
numpy.moveaxis(a, source, destination)
其中:
a:数组。
source:要移动的轴的原始位置。
destination:要移动的轴的目标位置。
a = np.ones((1, 2, 3))
np.moveaxis(a, 0, -1)
array([[[1.],
[1.],
[1.]],
[[1.],
[1.],
[1.]]])
a.shape, np.moveaxis(a, 0, -1).shape
((1, 2, 3), (2, 3, 1))
轴交换
和 moveaxis 不同的是,swapaxes 可以用来交换数组的轴。其方法如下: numpy.swapaxes(a, axis1,axis2)
其中:
a:数组。
axis1:需要交换的轴 1 位置。
axis2:需要与轴 1 交换位置的轴 1 位置。
a = np.ones((1, 4, 3))
np.swapaxes(a, 0, 2)
array([[[1.],
[1.],
[1.],
[1.]],
[[1.],
[1.],
[1.],
[1.]],
[[1.],
[1.],
[1.],
[1.]]])
数组转置
transpose 类似于矩阵的转置,它可以将 2 维数组的横轴和纵轴交换。其方法如下:
numpy.transpose(a, axes=None)
其中:
a:数组。
axis:该值默认为 none,表示转置。如果有值,那么则按照值替换轴。
a = np.arange(4).reshape(2, 2)
np.transpose(a)
array([[0, 2],
[1, 3]])
维度改变
atleast_xd 支持将输入数据直接视为 x维。这里的 x 可以表示:1,2,3。方法分别为:
numpy.atleast_1d()
numpy.atleast_2d()
numpy.atleast_3d()
print(np.atleast_1d([1, 2, 3]))
print(np.atleast_2d([4, 5, 6]))
print(np.atleast_3d([7, 8, 9]))
[1 2 3]
[[4 5 6]]
[[[7]
[8]
[9]]]
类型转换
在 NumPy 中,还有一系列以 as 开头的方法,它们可以将特定输入转换为数组,亦可将数组转换为矩阵、标量,ndarray 等。如下:
asarray(a,dtype,order):将特定输入转换为数组。
asanyarray(a,dtype,order):将特定输入转换为 ndarray。
asmatrix(data,dtype):将特定输入转换为矩阵。
asfarray(a,dtype):将特定输入转换为 float 类型的数组。
asarray_chkfinite(a,dtype,order):将特定输入转换为数组,检查 NaN 或 infs。
asscalar(a):将大小为 1 的数组转换为标量。
a = np.arange(4).reshape(2, 2)
np.asmatrix(a) # 将二维数组转化为矩阵类型
matrix([[0, 1],
[2, 3]])
数组连接
concatenate 可以将多个数组沿指定轴连接在一起。其方法为:
numpy.concatenate((a1, a2, …), axis=0)
其中:
(a1, a2, …):需要连接的数组。
axis:指定连接轴。
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([[7, 8], [9, 10]])
c = np.array([[11, 12]])
np.concatenate((a, b, c), axis=0)
array([[ 1, 2],
[ 3, 4],
[ 5, 6],
[ 7, 8],
[ 9, 10],
[11, 12]])
数组堆叠
在 NumPy 中,以下方法可用于数组的堆叠:
stack(arrays,axis):沿着新轴连接数组的序列。
column_stack():将 1 维数组作为列堆叠到 2 维数组中。
hstack():按水平方向堆叠数组。
vstack():按垂直方向堆叠数组。
dstack():按深度方向堆叠数组。
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
np.stack((a, b))
array([[1, 2, 3],
[4, 5, 6]])
拆分
split 及与之相似的一系列方法主要是用于数组的拆分,列举如下:
split(ary,indices_or_sections,axis):将数组拆分为多个子数组。
dsplit(ary,indices_or_sections):按深度方向将数组拆分成多个子数组。
hsplit(ary,indices_or_sections):按水平方向将数组拆分成多个子数组。
vsplit(ary,indices_or_sections):按垂直方向将数组拆分成多个子数组。
a = np.arange(10)
np.split(a, 5)
[array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7]), array([8, 9])]
除了 1 维数组,更高维度也是可以直接拆分的。例如,我们可以将下面的数组按行拆分为 2。
a = np.arange(10).reshape(2, 5)
np.split(a, 2)
[array([[0, 1, 2, 3, 4]]), array([[5, 6, 7, 8, 9]])]
删除
delete(arr,obj,axis):沿特定轴删除数组中的子数组。
a = np.arange(12).reshape(3, 4)
np.delete(a, 2, 1)
array([[ 0, 1, 3],
[ 4, 5, 7],
[ 8, 9, 11]])
这里代表沿着横轴,将第 3 列(索引 2)删除。当然,你也可以沿着纵轴,将第三行删除。
np.delete(a, 2, 0)
array([[0, 1, 2, 3],
[4, 5, 6, 7]])
数组插入
insert(arr,obj,values,axis):依据索引在特定轴之前插入值。
a = np.arange(12).reshape(3, 4)
b = np.arange(4
np.insert(a, 2, b, 0)
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 0, 1, 2, 3],
[ 8, 9, 10, 11]])
附加
append 的用法也非常简单。只需要设置好需要附加的值和轴位置就好了。它其实相当于只能在末尾插入的 insert,所以少了一个指定索引的参数。
append(arr,values,axis):将值附加到数组的末尾,并返回 1 维数组。
a = np.arange(6).reshape(2, 3)
b = np.arange(3)
np.append(a, b)
array([0, 1, 2, 3, 4, 5, 0, 1, 2])
- 注意 append方法返回值,默认是展平状态下的 1 维数组。
重设尺寸
resize(a,new_shape):对数组尺寸进行重新设定。
a = np.arange(10)
a.resize(2, 5)
a
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
- reshape 在改变形状时,不会影响原数组,相当于对原数组做了一份拷贝。而 resize 则是对原数组执行操作。
翻转数组
fliplr(m):左右翻转数组。
flipud(m):上下翻转数组。
a = np.arange(16).reshape(4, 4)
print(np.fliplr(a))
print(np.flipud(a))
[[ 3 2 1 0]
[ 7 6 5 4]
[11 10 9 8]
[15 14 13 12]]
[[12 13 14 15]
[ 8 9 10 11]
[ 4 5 6 7]
[ 0 1 2 3]]
3.3 NumPy 随机数
numpy.random.rand(d0, d1, …, dn) 方法的作用为:指定一个数组,并使用 [0, 1) 区间随机数据填充,这些数据均匀分布。
np.random.rand(2, 5)
array([[0.71325296, 0.97288004, 0.67165328, 0.65778695, 0.58144341],
[0.44839412, 0.76806676, 0.85038081, 0.17197798, 0.30119803]])
- numpy.random.randn(d0, d1, …, dn) 与 numpy.random.rand(d0, d1, …,dn) 的区别在于,前者是从标准正态分布中返回一个或多个样本值。
np.random.randn(1, 10)
array([[-8.67054348e-01, -1.14570372e+00, -3.68965985e-01,
2.22259935e+00, -1.61916983e-01, -2.52850893e-01,
-9.03502291e-04, -1.26194118e+00, -4.72262958e-01,
1.59488742e+00]])
randint(low, high, size, dtype) 方法将会生成 [low, high) 的随机整数。注意这是一个半开半闭区间。
random_sample(size) 方法将会在 [0, 1) 区间内生成指定 size 的随机浮点数
choice(a, size, replace, p) 方法将会给定的数组里随机抽取几个值,该方法类似于随机抽样。
np.random.randint(2, 5, 10)
array([2, 2, 3, 3, 4, 3, 2, 2, 3, 2])
np.random.random_sample([10])
array([0.48839332, 0.58938579, 0.3569458 , 0.2910725 , 0.30592387,
0.98840995, 0.948247 , 0.12585309, 0.67832327, 0.73627051]
np.random.choice(10, 5)
array([8, 4, 0, 6, 3])
概率密度分布
除了上面介绍的 6 种随机数生成方法,NumPy 还提供了大量的满足特定概率密度分布的样本生成方法。它们的使用方法和上面非常相似,这里就不再一一介绍了。列举如下:
numpy.random.beta(a,b,size):从 Beta 分布中生成随机数。
numpy.random.binomial(n, p, size):从二项分布中生成随机数。
numpy.random.chisquare(df,size):从卡方分布中生成随机数。
numpy.random.dirichlet(alpha,size):从 Dirichlet 分布中生成随机数。
numpy.random.exponential(scale,size):从指数分布中生成随机数。
numpy.random.f(dfnum,dfden,size):从 F 分布中生成随机数。
numpy.random.gamma(shape,scale,size):从 Gamma 分布中生成随机数。
numpy.random.geometric(p,size):从几何分布中生成随机数。
numpy.random.gumbel(loc,scale,size):从 Gumbel 分布中生成随机数。
numpy.random.hypergeometric(ngood, nbad, nsample, size):从超几何分布中生成随机数。
numpy.random.laplace(loc,scale,size):从拉普拉斯双指数分布中生成随机数。
numpy.random.logistic(loc,scale,size):从逻辑分布中生成随机数。
numpy.random.lognormal(mean,sigma,size):从对数正态分布中生成随机数。
numpy.random.logseries(p,size):从对数系列分布中生成随机数。
numpy.random.multinomial(n,pvals,size):从多项分布中生成随机数。
numpy.random.multivariate_normal(mean, cov, size):从多变量正态分布绘制随机样本。
numpy.random.negative_binomial(n, p, size):从负二项分布中生成随机数。
numpy.random.noncentral_chisquare(df,nonc,size):从非中心卡方分布中生成随机数。
numpy.random.noncentral_f(dfnum, dfden, nonc, size):从非中心 F 分布中抽取样本。
numpy.random.normal(loc,scale,size):从正态分布绘制随机样本。
numpy.random.pareto(a,size):从具有指定形状的 Pareto II 或 Lomax 分布中生成随机数。
numpy.random.poisson(lam,size):从泊松分布中生成随机数。
numpy.random.power(a,size):从具有正指数 a-1 的功率分布中在 0,1 中生成随机数。
numpy.random.rayleigh(scale,size):从瑞利分布中生成随机数。
numpy.random.standard_cauchy(size):从标准 Cauchy 分布中生成随机数。
numpy.random.standard_exponential(size):从标准指数分布中生成随机数。
numpy.random.standard_gamma(shape,size):从标准 Gamma 分布中生成随机数。
numpy.random.standard_normal(size):从标准正态分布中生成随机数。
numpy.random.standard_t(df,size):从具有 df 自由度的标准学生 t 分布中生成随机数。
numpy.random.triangular(left,mode,right,size):从三角分布中生成随机数。
numpy.random.uniform(low,high,size):从均匀分布中生成随机数。
numpy.random.vonmises(mu,kappa,size):从 von Mises 分布中生成随机数。
numpy.random.wald(mean,scale,size):从 Wald 或反高斯分布中生成随机数。
numpy.random.weibull(a,size):从威布尔分布中生成随机数。
numpy.random.zipf(a,size):从 Zipf 分布中生成随机数。
3.4 数学函数
三角函数
NumPy 提供的三角函数功能。这些方法有:
numpy.sin(x):三角正弦。
numpy.cos(x):三角余弦。
numpy.tan(x):三角正切。
numpy.arcsin(x):三角反正弦。
numpy.arccos(x):三角反余弦。
numpy.arctan(x):三角反正切。
numpy.hypot(x1,x2):直角三角形求斜边。
numpy.degrees(x):弧度转换为度。
numpy.radians(x):度转换为弧度。
numpy.deg2rad(x):度转换为弧度。
numpy.rad2deg(x):弧度转换为度。
双曲函数
numpy.sinh(x):双曲正弦。
numpy.cosh(x):双曲余弦。
numpy.tanh(x):双曲正切。
numpy.arcsinh(x):反双曲正弦。
numpy.arccosh(x):反双曲余弦。
numpy.arctanh(x):反双曲正切。
数值修约
数值修约, 又称数字修约, 是指在进行具体的数字运算前, 按照一定的规则确定一致的位数, 然后舍去某些数字后面多余的尾数的过程。比如, 我们常听到的「4 舍 5 入」就属于数值修约中的一种。
numpy.around(a):平均到给定的小数位数。
numpy.round_(a):将数组舍入到给定的小数位数。
numpy.rint(x):修约到最接近的整数。
numpy.fix(x, y):向 0 舍入到最接近的整数。
numpy.floor(x):返回输入的底部(标量 x 的底部是最大的整数 i)。
numpy.ceil(x):返回输入的上限(标量 x 的底部是最小的整数 i).
numpy.trunc(x):返回输入的截断值。
求和、求积、差分
numpy.prod(a, axis, dtype, keepdims):返回指定轴上的数组元素的乘积。
numpy.sum(a, axis, dtype, keepdims):返回指定轴上的数组元素的总和。
numpy.nanprod(a, axis, dtype, keepdims):返回指定轴上的数组元素的乘积, 将 NaN 视作 1。
numpy.nansum(a, axis, dtype, keepdims):返回指定轴上的数组元素的总和, 将 NaN 视作 0。
numpy.cumprod(a, axis, dtype):返回沿给定轴的元素的累积乘积。
numpy.cumsum(a, axis, dtype):返回沿给定轴的元素的累积总和。
numpy.nancumprod(a, axis, dtype):返回沿给定轴的元素的累积乘积, 将 NaN 视作 1。
numpy.nancumsum(a, axis, dtype):返回沿给定轴的元素的累积总和, 将 NaN 视作 0。
numpy.diff(a, n, axis):计算沿指定轴的第 n 个离散差分。
numpy.ediff1d(ary, to_end, to_begin):数组的连续元素之间的差异。
numpy.gradient(f):返回 N 维数组的梯度。
numpy.cross(a, b, axisa, axisb, axisc, axis):返回两个(数组)向量的叉积。
numpy.trapz(y, x, dx, axis):使用复合梯形规则沿给定轴积分。
指数和对数
如果你需要进行指数或者对数求解,可以用到以下这些方法。
numpy.exp(x):计算输入数组中所有元素的指数。
numpy.log(x):计算自然对数。
numpy.log10(x):计算常用对数。
numpy.log2(x):计算二进制对数。
算术运算
当然,NumPy 也提供了一些用于算术运算的方法,使用起来会比 Python 提供的运算符灵活一些,主要是可以直接针对数组。
numpy.add(x1, x2):对应元素相加。
numpy.reciprocal(x):求倒数 1/x。
numpy.negative(x):求对应负数。
numpy.multiply(x1, x2):求解乘法。
numpy.divide(x1, x2):相除 x1/x2。
numpy.power(x1, x2):类似于 x1^x2。
numpy.subtract(x1, x2):减法。
numpy.fmod(x1, x2):返回除法的元素余项。
numpy.mod(x1, x2):返回余项。
numpy.modf(x1):返回数组的小数和整数部分。
numpy.remainder(x1, x2):返回除法余数。
矩阵和向量积
求解向量、矩阵、张量的点积等同样是 NumPy 非常强大的地方。
numpy.dot(a, b):求解两个数组的点积。
numpy.vdot(a, b):求解两个向量的点积。
numpy.inner(a, b):求解两个数组的内积。
numpy.outer(a, b):求解两个向量的外积。
numpy.matmul(a, b):求解两个数组的矩阵乘积。
numpy.tensordot(a, b):求解张量点积。
numpy.kron(a, b):计算 Kronecker 乘积。
NumPy 中还有一些用于数学运算的方法,归纳如下:
numpy.angle(z, deg):返回复参数的角度。
numpy.real(val):返回数组元素的实部。
numpy.imag(val):返回数组元素的虚部。
numpy.conj(x):按元素方式返回共轭复数。
numpy.convolve(a, v, mode):返回线性卷积。
numpy.sqrt(x):平方根。
numpy.cbrt(x):立方根。
numpy.square(x):平方。
numpy.absolute(x):绝对值, 可求解复数。
numpy.fabs(x):绝对值。
numpy.sign(x):符号函数。
numpy.maximum(x1, x2):最大值。
numpy.minimum(x1, x2):最小值。
numpy.nan_to_num(x):用 0 替换 NaN。
numpy.interp(x, xp, fp, left, right, period):线性插值。
代数运算
numpy.linalg.cholesky(a):Cholesky 分解。
numpy.linalg.qr(a ,mode):计算矩阵的 QR 因式分解。
numpy.linalg.svd(a ,full_matrices,compute_uv):奇异值分解。
numpy.linalg.eig(a):计算正方形数组的特征值和右特征向量。
numpy.linalg.eigh(a, UPLO):返回 Hermitian 或对称矩阵的特征值和特征向量。
numpy.linalg.eigvals(a):计算矩阵的特征值。
numpy.linalg.eigvalsh(a, UPLO):计算 Hermitian 或真实对称矩阵的特征值。
numpy.linalg.norm(x ,ord,axis,keepdims):计算矩阵或向量范数。
numpy.linalg.cond(x ,p):计算矩阵的条件数。
numpy.linalg.det(a):计算数组的行列式。
numpy.linalg.matrix_rank(M ,tol):使用奇异值分解方法返回秩。
numpy.linalg.slogdet(a):计算数组的行列式的符号和自然对数。
numpy.trace(a ,offset,axis1,axis2,dtype,out):沿数组的对角线返回总和。
numpy.linalg.solve(a, b):求解线性矩阵方程或线性标量方程组。
numpy.linalg.tensorsolve(a, b ,axes):为 x 解出张量方程 a x = b
numpy.linalg.lstsq(a, b ,rcond):将最小二乘解返回到线性矩阵方程。
numpy.linalg.inv(a):计算逆矩阵。
numpy.linalg.pinv(a ,rcond):计算矩阵的(Moore-Penrose)伪逆。
numpy.linalg.tensorinv(a ,ind):计算 N 维数组的逆。
3.5 数组索引和切片
数组索引
可以通过索引值(从 0 开始)来访问 Ndarray 中的特定位置元素。NumPy 中的索引和 Python 对 list 索引的方式非常相似,但又有所不同
一维数据索引
a = np.arange(10) # 生成 0-9
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
获取索引值为 1 的数据。
a[1]
1
分别获取索引值为 1,2,3 的数据。
a[[1, 2, 3]]
array([1, 2, 3])
二维数据:
a = np.arange(20).reshape(4, 5)
a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
获取第 2 行,第 3 列的数据。
a[1, 2]
7
如果,我们使用 Python 中的 list 索引同样的值,看看有什么区别:
a = a.tolist()
a
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
按照上面的方法获取第 2 行,第 3 列的数据。
a[1, 2]
出错:
TypeError Traceback (most recent call last)
in
----> 1 a[1, 2]
TypeError: list indices must be integers or slices, not tuple
Python 中 list 索引 2 维数据的方法正确的做法是:
a[1][2]
7
如何索引二维 Ndarray 中的多个元素值,这里使用逗号,分割
a = np.arange(20).reshape(4, 5)
a[[1, 2], [3, 4]]
array([ 8, 14])
三维数据:
a = np.arange(30).reshape(2, 5, 3)
a
a[[0, 1], [1, 2], [1, 2]]
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
array([ 4, 23])
数组切片
和 Python 里的list 切片操作是一样的。其语法为:
Ndarray[start:stop:step]
[start:stop:step] 分别代表 [起始索引:截至索引:步长]。对于一维数组:
a = np.arange(10)
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
a[:5]
array([0, 1, 2, 3, 4])
对于多维数组,我们只需要用逗号 , 分割不同维度即可:
a = np.arange(20).reshape(4, 5)
a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
先取第 3,4 列(第一个维度),再取第 1,2,3 行(第二个维度)
a[0:3, 2:4]
array([[ 2, 3],
[ 7, 8],
[12, 13]])
3.6 排序、搜索、计数
numpy.sort(a, axis=-1, kind=‘quicksort’, order=None) 其中:
a:数组。
axis:要排序的轴。如果为None,则在排序之前将数组铺平。默认值为 -1,沿最后一个轴排序。
kind:{‘quicksort’,‘mergesort’,‘heapsort’},排序算法。默认值为 quicksort。
numpy.lexsort(keys ,axis):使用多个键进行间接排序。
numpy.argsort(a ,axis,kind,order):沿给定轴执行间接排序。
numpy.msort(a):沿第 1 个轴排序。
numpy.sort_complex(a):针对复数排序。
搜索和计数
argmax(a ,axis,out):返回数组中指定轴的最大值的索引。
nanargmax(a ,axis):返回数组中指定轴的最大值的索引,忽略 NaN。
argmin(a ,axis,out):返回数组中指定轴的最小值的索引。
nanargmin(a ,axis):返回数组中指定轴的最小值的索引,忽略 NaN。
argwhere(a):返回数组中非 0 元素的索引,按元素分组。
nonzero(a):返回数组中非 0 元素的索引。
flatnonzero(a):返回数组中非 0 元素的索引,并铺平。
where(条件,x,y):根据指定条件,从指定行、列返回元素。
searchsorted(a,v ,side,sorter):查找要插入元素以维持顺序的索引。
extract(condition,arr):返回满足某些条件的数组的元素。
count_nonzero(a):计算数组中非 0 元素的数量。