PCA和LDA

PCA:

把样本点投影到新的坐标系里,使得在这几个维度上的投影值,分散得开(也就是方差大);

步骤:

1. 中心化 (所有样本,每个维度都减去该维度得均值)

2. 求样本协方差矩阵 (因为各个维度得均值\mu [i]都等于0,所以可以把(x[i]-u[i])化简为x[i] )

3. 求该协方差矩阵的所有特征值\lambda和对应的特征向量\mu

4. 取最大的k个特征值对应的特征向量\mu们,就是该样本集的主成分们;

5. 把样本映射到k个特征向量上,得到k个新的维度值;点到直线的投影\frac{x\cdot u}{|u|},因为|u|=1(单位向量), 所以化简为x\cdot u

综上,主成分找到了,数据降维也完成了。

 

原理推导:

最大方差理论:样本投影到主成分上,方差最大化

1. 投影后的方差,是所有样本的((x-mean_x)\cdot u-mean_u)^2的均值,因为x经过中心化,所以mean_x=0向量,而(x-mean_x)\cdot u的均值也是0向量,所以等价于(x\cdot u)^2

2. 把(x\cdot u)^2化为u^{T}xx^{T}u, 再把\frac{1}{m}\sum_{i=1}^{m}放到中间两项的前面,可把中间两项化成协方差矩阵\Sigma, 即求解u^{T}\Sigma u的最大值

3. 现在要求u^{T}\Sigma u的最大值,且有条件|u|=1, 则视为带约束的最优化问题,可用拉格朗日法求解;(u^{T}\Sigma u转成-u^{T}\Sigma u求最小值即可)

4. 拉格朗日法,L=-u^{T}\Sigma u+\alpha (u^{T}u-1), L对u求导=0, 得到\Sigma u=\alpha u, 所以\alpha\Sigma的特征值,u是\Sigma的特征向量;

5. 4的\Sigma u带入u^{T}\Sigma u,得到u^{T}\alpha u, 等于\alpha; 在所有值里选最大的,其对应的特征向量就是使得投影方差最大的主成分;选第2大的,就是使得投影方差第2大的主成分,......

 

LDA:

用拉格朗日乘子法求带等式约束的最优化问题,清晰易懂;

关键式子:(a和b都是列向量,a是方向向量w, b是样本x或者类别均值向量u)

(a\cdot b)^{2}=(a^{T}\cdot b)^{2}=(a^{T}\cdot b)(a^{T}\cdot b)=(a^{T}\cdot b)(a^{T}\cdot b)^{T}=(a^{T}\cdot b)(b^{T}\cdot a)=a^{T}bb^{T}a

LDA的目标:最大化(异类样例的均值在目标方向的投影点间距 / 所有类别的同类样本和均值投影到目标方向后的方差之和)

写成J = \frac{w^{T}S_{b}w}{w^{T}S_{w}w}...(1), 把分母固定等于1,最小化负分子,用拉格朗日,对w求导=0,解得S_{b}w=\lambda S_{w}w, 即\lambda = \frac{S_{b}w}{S_{w}w}...(2); S_{w}^{-1}S_{b}w=\lambda w; 所以\lambda是特征值时, 式子成立;把(2)带入(1),得J = \lambda; 所以当\lambda是最大特征值时,J最大;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值