python数据分析笔记numpy Day1

numpy模块

是听b站课程做的笔记。
numpy相当于一个数组数据的容器,用numpy进行某种特定的数值科学运算

numpy的创建

导入numpy模块

import numpy as np

在这里插入图片描述
object:具体的数据
dtype:存储在数组中具体数据类型
后面的就不用管啦!

#一维的数组
arr1=np.array([1,2,3])
#二维的数组
arr2=np.array([1,2,3],[4,5,6])

二维用的是最多的
在这里插入图片描述
数据类型是统一的,其中a是字符串类型,所有的都自动变成字符串。

图片加载在numpy中

导入matplotlib

import matplotlib.pyplot as plt
plt.imread('图片路径和名称')

在这里插入图片描述
这是一个三维数组,看蓝色光标部分。图片的RGB是三个变量,比如白色的RGB值[255,255,255]
在这里插入图片描述
在这里插入图片描述
numpy数组可以直接将每个数据元素减去100
人脸识别其实也是靠图片的原始数据元素识别的,截图就是把调整局部的数据

常用函数

在这里插入图片描述

np.ones(shape=(2,3),dtype='int32')

在这里插入图片描述
在这里插入图片描述
两种等差数组
num是等差数列的数字个数,step步长表示公差

np.linespace(start,end,num)
np.arrange(start,end,step)

在这里插入图片描述
随机数生成数列,最小值、最大值,size是数组形状
通过size参数控制数组的维度。一本书是三维的话,每一页就是二维的,每一行文字就是一维的。
在这里插入图片描述

np.random.randint(0,100,size=(10,))#一维数组
np.random.randint(0,100,size=(3,4))#二维数组

常用属性

在这里插入图片描述
调用方式:对象.属性

arr.shape #数组的形状
arr.dim #维度
arr.size #元素个数
arr.dtype #数据元素类型
type(arr) #arr本身的类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值