ACM: 图论题 poj 1125 (题意读好久…

                                                      Stockbroker Grapevine

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.

Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.

Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3

2 2 4 3 5

2 1 2 3 6

2 1 2 2 2

5

3 4 4 2 8 5 3

1 5 8

4 1 6 4 10 2 7 5 2

0

2 2 5 1 5

0

Sample Output

3 2

3 10


题意: 股票经纪人,想要传播一个谣言,给每一个同事,但是每一个股票经纪人只相信自己那part人.
          要求求出选择哪个开始可以让谣言传播的最快.

个人思路:
                 1. 一开是想到是最小生成树问题.后面发现多次迭代的选择股票经纪人跟floyd思路类似.
                 2. 还是选择最短路径求解 floyd算法.
                 3. 最后要选择出最后一个人收到谣言的时间.(问题的转化: 谣言传播是多人同步进行.)

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 1000
const int INF = (1<<20);

int dist[MAX][MAX];
int n;
int point , maxsize , minsize;

void read_graph()
{
    int i , j;
    for(i = 1; i <= n; ++i)
        for(j = 1; j <= n; ++j)
            dist[i][j] = (i == j ? 0 : INF);
            
    int k;
    int v , w;
    for(i = 1; i <= n; ++i)
    {
        scanf("%d",&k);
        for(j = 1; j <= k; ++j)
        {
            scanf("%d %d",&v,&w);
            dist[i][v] = w;
        }
    }
}

void floyd()
{
    for(int k = 1; k <= n; ++k)
    {
        for(int i = 1; i <= n; ++i)
        {
            for(int j = 1; j <= n; ++j)
            {
                if(dist[i][j] > dist[i][k] + dist[k][j])
                {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }
}

void result()
{
    int i , j;
    minsize = INF;
    for(i = 1; i <= n; ++i)
    {
        maxsize = 0;
        for(j = 1; j <= n; ++j)
        {
            if(i != j && dist[i][j] > maxsize)
            {
                maxsize = dist[i][j];
            }
        }
        
        if(maxsize < minsize)
        {
            minsize = maxsize;
            point = i;
        }
    }
}

int main()
{
//    freopen("input.txt","r",stdin);
    while(scanf("%d",&n) != EOF && n != 0)
    {
        read_graph();
        floyd();
        result();
        
        if(minsize == INF)
            printf("disjoint\n");
        else
            printf("%d %d\n",point,minsize);
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值