ACM: uva 11464

D

Even Parity

Input: Standard Input

Output: Standard Output

ACM: <wbr>uva <wbr>11464

We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1).
The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

Suppose we have a grid of size 4 x 4

1

0

1

0

The parity of each cell would be

1

3

1

2

1

1

1

1

2

3

3

1

0

1

0

0

2

1

2

1

0

0

0

0

0

1

0

0

 

 

 

For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

Input

The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

Output

For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead

Sample Input

3
3
0 0 0
0 0 0
0 0 0
3
0 0 0
1 0 0
0 0 0
3
1 1 1
1 1 1
0 0 0

Output for Sample Input

Case 1: 0
Case 2: 3
Case 3: -1

题意: n*n的矩阵中, 现在要使得每个格子的上下左右相加的元素和为偶数, 每个格子的元素

          只能时0和1, 并且只有0元素可以改成1, 问用最少修改次数使得矩阵满足条件.


解题思路:

         1. 2^(15*15)这是枚举的情况, 可以采用动态规划中状态压缩的思路, 枚举第一行的情况,

             然后根据第一行的情况推算出其它行的情况. 复杂度O( (2^15)*n*n ).


代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 16
const int INF = (1<<29);

int n;
int a[MAX][MAX], b[MAX][MAX];

inline int min(int a, int b)
{
    return a < b ? a: b;
}

int solve(int situation)
{
    memset(b, 0, sizeof(b));
    for(int i = 0; i < n; ++i)
    {
        if(situation & (1<<i)) b[0][i] = 1;
        else if(a[0][i] == 1) return INF;
    }
   
    for(int i = 1; i < n; ++i)
    {
        for(int j = 0; j < n; ++j)
        {
            int sum = 0;
            if(i > 1) sum += b[i-2][j];
            if(j < n-1) sum += b[i-1][j+1];
            if(j > 0) sum += b[i-1][j-1];
            b[i][j] = sum%2;
            if(a[i][j] == 1 && b[i][j] == 0) return INF;
        }
    }
   
    int count = 0;
    for(int i = 0; i < n; ++i)
        for(int j = 0; j < n; ++j)
            if(a[i][j] != b[i][j])
                count++;
    return count;
}

int main()
{
//    freopen("input.txt", "r", stdin);
    int caseNum, num = 1;
    scanf("%d", &caseNum);
    while(caseNum--)
    {
        scanf("%d", &n);
        for(int i = 0; i < n; ++i)
            for(int j = 0; j < n; ++j)
                scanf("%d", &a[i][j]);
       
        int result = INF;
        for(int i = 0; i < (1<<n); ++i)
        {
            result = min(result, solve(i));
        }
       
        if(result == INF) printf("Case %d: -1\n", num++);
        else printf("Case %d: %d\n", num++, result);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值