朴素bayes公式分类器

理论问题
朴素贝叶斯文本分类模型分为两种:

* 文档型
* 词频型

都是使用下式计算进行分类:

cNB=arg Max( P(cj) * ∏1C P(xi|cj) )
其中,P(cj)为类别j的先验概率,P(xi|cj)为特征量 xi在类别cj的类条件概率

上次的分类模型属于文档型的,正确率约为50%左右,理论上朴素贝叶斯分类的正确率可以达到80%以上。文档型的正确率很低,主要原因是训练库的以分文本质量低下。目前我们已经在着手自己收集训练数据了,提高训练库的质量。

先验概率计算
先验概率计算方式有两种:

* 文档型 不考虑词频在各分类下的出现次数,仅考虑各分类下文档的数目。如下式计算:
P(cj)=N(C=cj)/N
其中,N(C=cj)表示类别cj中的训练文本数量; N表示训练文本集总数量。
* 词频型 考虑单词在各分类文档中出现的频次,如下式计算:
P(cj)=V∑k=1TF(X=xk, C=cj)/W∑m=1V∑ k=1TF(X=xk, C=cm)
其中,V表示特征词表中总单词(属性)数,TF(X=xi, C=cj) 表示属性xi在类cj中出现次数之和,W表示总类别数目。

注意:类条件概率的计算方式必须与先验概率的计算方式匹配,如果先验概率是用文档型 计算的,那么类条件概率也必须使用文档型计算方式,反之亦然。

类条件概率
类条件概率的计算有两种方式:

* 文档型 不考虑单词在文档中的出现频次,仅考虑单词在文档中是否出现。 0表示未出现,1表示出现。 如下式计算:
P(xj|cj)=( N(X=xi, C=cj )+1 ) / ( N(C=cj)+V )
其中,N(X=xi, C=cj)表示类别cj中包含属性x i的训练文本数量;N(C=cj)表示类别cj中的训练文本数量;V表示类别的总数。
* 词频型 考虑单词在文档中出现的频次,如下式计算:
P(xj|cj)=( TF(X=xi, C=cj)+1) / ( V+V∑k=1TF(X=xk, C=cj) )
其中,V表示特征词表中总单词(属性)数,TF(X=xi, C=cj) 表示属性xi在类cj中出现次数之和。

注意:

* 类条件概率的计算方式必须与先验概率的计算方式匹配,如果先验概率是用文档型 计算的,那么类条件概率也必须使用文档型计算方式,反之亦然
* 为避免类条件概率结果为0,采用了拉普拉斯概率估计

关于训练库的预处理

为了提高分类的效率和准确率,必须对训练库进行预处理。主要预处理步骤如下:

1. 读取某一分类下的所有训练文本
2. 对这些文本进行分词处理
3. 通过词性、词长过滤无用词
4. 将剩下的词作为这一分类的特征结果并保存成文本

目前实现的训练库预处理器主要是针对词频分类模型的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值