朴素贝叶斯分类器之原理

朴素贝叶斯分类器之原理

 

1.  首先我认为想要学习朴素贝叶斯的分类器,就一定要了解贝叶斯公式:

p(x|y)=p(y|x)p(x)/p(y)

具体的含义就不细讲了。

如果是运用在分类器中,我们假设各个单词之间是两两独立的,(也正是因为有了这个假设,才使得我们的计算变得相对简单,个人认为这也是NB会广泛应用的原因之一)。公式就变为:

p(ci|x)=p(x|ci)p(ci)/p(x)

其中,x表示相对应的特征集合;p(x)对于所有分类均为常数,所以在实际计算中,可以忽略;p(x|ci)表示分类ci条件下,特征x的概率;p(ci)表示类别ci在训练集中的概率。

下面将具体讲解各个变量在实际使用中的计算方法

2.  在文本分类问题中,我们假设:文本特征向量x1,x2...xn独立且同分布,所以其联合概率分布等于各个属性特征概率分布的乘积。其中,单个的p(xi|c)通过统计得到。

3.  先验概率p(ci)=ci的样本数/总样本数;

为了避免p(ci)=0,我们令

p(ci)=(1+ci的样本数)/(总样本数+训练集中类的数目)

4.  在使用朴素贝叶斯分类器时,我认为更为重要的是,你在文本中如何选取特征,例如我们可以采用类似于vsm的方法选取特征,利用词频,利用TFIDF,利用TFDF,利用IG(信息增益)等等方法来提取特征。

5.  例如,我们用两种范围计算p(xj|ci)

6.  p(xj|ci)=(1+N(doc(xj)|ci))/(2+|Dc|)

其中N(doc(xj)|ci)表示ci类中文本中出现特征xj的文档数

7.  p(xj|ci)=(1+TF(xj|ci))/(|V|+TF(xk|ci)的和)

其中,|V|表示总特征词表中总特征数;

TF(xj|ci)表示特征xj在类ci的所有文档中出现的频次之和

TF(xk|ci)的和表示对于从k=1到k=m的所有的特征xk在类ci中的TF之和

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值