ACM周末总结—9月10日

在最近的网络赛中,作者回顾了自己的表现,包括未能解决的一些问题和队友的帮助。通过比赛,作者意识到自己在图论和动态规划等方面存在不足,并制定了详细的学习计划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         这半个周除了日常看线段树以外,在周六,周末还进行了两场网络赛,虽然实力有限,但我还是尽全力完成了比赛,至少比上一次稍微多了一些经验。

        周六的比赛,A题是我来负责的题,但我没成功A出,题意就是多只猴子,每只猴子都有自己喜欢的的香蕉种类,不同种的香蕉产与不同的场,求每只猴子可被哪几个厂满足。其实这是道水题,用两个二维数组记录对应关系,暴力解决,时间绝对够用,可不知怎么,就是有问题,后来通过和队友交换题目,队友用同样的思路,稍微不同的处理方法A的,惭愧,惭愧。E题是队友A出的,还是很惭愧,我负责的H题,给一个有向图,求最长路径,我很快就想到了用类似拓扑排序的方法做,就是想找到只有进,没出度的点,更新距离,然后删除该点及相关路径,最后还是只能说,我能无能拖累了全队。还有另一个图论题,找最少补多少条边可以令图中任意一点到其他任一点,等出了相关题解,还要研究研究。之前一直感觉自己在图论题上有些自信,这次彻底现原形,有思路,A不出,是我的过。

       周末,少了一名队员(补考,没办法),但我还是尽全力了。第四题说是求去掉n个数,是否可是成为单调数列,这道题其实就是求最长上升子序列的长度,正反求一遍,求最长度是多少,可常规方法是n^2的时间,所以要用LIS算法优化,就A出了。还有,很遗憾,第五题,就是输入k,求选若干斐波那契数,不能组成的最小自然数,我虽然推出,f[i]=f[i-1]+a[flag];flag=flag+2;的规律,但一直无奈数据量10的9方,连最起码的打表求斐波那契数都超时,无论怎么想都推不出怎么快求斐波那契数,最后沉迷此题,没能再有其他的结果。等出题解后还要在研究研究,重新好好总结下。

      虽然很累,但做题时真的很开心。我还是落后太多了,像图论,动态规划都还有这许多问题,所学习的知识点不够,代码依旧不熟练,最无奈就是有思路,A不出,太丢人了。还是要挤时间,多看博客。

      新的一周,我除了早上要开始跑步以外,中午至少看一道图论,晚饭后一题动态规划,睡前及其他时间线段树。

      基本从假期状态脱出,这一周对换校区与大二适应些了,加把劲!!!!

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值