[数学分析]级数笔记

数项级数

1.概念

(1)无穷可列个实数 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn的和称为数项级数(简称级数),记为 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn。若该列数的部分和数列 { S n } \{S_n\} {Sn}收敛于S,则称 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛于S,记为 S = ∑ n = 1 ∞ x n S=\sum_{n=1}^{\infty}x_n S=n=1xn。若 { S n } \{S_n\} {Sn}发散,则称 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散。
  eg1.1:  ∑ n = 1 ∞ q n \sum_{n=1}^{\infty}q^n n=1qn (几何级数)
∣ q ∣ < 1 时 , ∑ n = 1 ∞ q n = 1 1 − q |q|<1时,\sum_{n=1}^{\infty}q^n=\frac{1}{1-q} q<1n=1qn=1q1
  eg1.2:  ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1 (p-级数)
p > 1 时 , ∑ n = 1 ∞ 1 n p 收 敛 p>1时,\sum_{n=1}^{\infty}\frac{1}{n^p}收敛 p>1n=1np1
p ≤ 1 时 , ∑ n = 1 ∞ 1 n p 发 散 p\le1时,\sum_{n=1}^{\infty}\frac{1}{n^p}发散 p1n=1np1

(2)记 r n = ∑ k = n + 1 ∞ x k r_n=\sum_{k=n+1}^{\infty}x_k rn=k=n+1xk,得到 { r n } \{r_n\} {rn}称为 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn的余和数列。
  易知,当 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛时,
lim ⁡ n → ∞ r n = lim ⁡ n → ∞ ( ∑ k = 1 ∞ x k − ∑ k = 1 n x k ) = S − lim ⁡ n → ∞ S n = 0 \lim_{n \to \infty}r_n=\lim_{n \to \infty}(\sum_{k=1}^{\infty}x_k-\sum_{k=1}^{n}x_k)=S- \lim_{n \to \infty}S_n=0 nlimrn=nlim(k=1xkk=1nxk)=SnlimSn=0

2.基本性质

(1) ∑ n = 1 ∞ x n 收 敛 ⇒ lim ⁡ n → ∞ x n = 0 \sum_{n=1}^{\infty}x_n收敛\Rightarrow \lim_{n \to \infty}x_n=0 n=1xnlimnxn=0
 pf: x n = S n − S n − 1 lim ⁡ n → ∞ x n = S − S = 0 \begin{aligned} x_n&=S_n-S_{n-1}\\ \lim_{n \to \infty}x_n&=S-S=0 \end{aligned} xnnlimxn=SnSn1=SS=0
反过来不成立。反例: p ≤ 1 p\le1 p1的p级数。
(2)线性性:
已知: ∑ n = 1 ∞ a n = A , ∑ n = 1 ∞ b n = B \sum_{n=1}^\infty a_n=A,\sum_{n=1}^\infty b_n=B n=1an=A,n=1bn=B
则: ∑ n = 1 ∞ ( α a n + β b n ) = α A + β B \sum_{n=1}^\infty (\alpha a_n+\beta b_n)=\alpha A+\beta B n=1(αan+βbn)=αA+βB
(3)若 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛于S,则在和式中任意添加括号,得到的级数仍然收敛于S。反之不成立。
 pf:部分和数列收敛,则其任意子列收敛。

正项级数

1.概念

∀ n , x n ≥ 0 \forall n,x_n\ge 0 n,xn0,则称 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn为正项级数。

2.敛散性的判别

(1)正项级数的收敛原理:正项级数收敛的充分必要条件是 { s n } \{s_n\} {sn}有上界。
(2)比较判别法:已知 ∑ n = 1 ∞ x n , ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}x_n,\sum_{n=1}^{\infty}y_n n=1xn,n=1yn为正项级数,若 ∃ A > 0 , N > 0 \exist A>0,N>0 A>0,N>0,使 ∀ n > N , x n ≤ A y n \forall n>N ,x_n\le Ay_n n>N,xnAyn,则:
  i) 若 ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}y_n n=1yn收敛,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
  ii)若 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散,则 ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}y_n n=1yn发散。

(2)’比较判别法的极限形式:已知 ∑ n = 1 ∞ x n , ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}x_n,\sum_{n=1}^{\infty}y_n n=1xn,n=1yn为正项级数,且 lim ⁡ n → ∞ x n y n = l \lim_{n \to \infty }\frac{x_n}{y_n}=l nlimynxn=l,则:
  i)若 0 ≤ l < + ∞ 0\le l<+\infty 0l<+ ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}y_n n=1yn收敛,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
  ii)若 0 < l ≤ + ∞ 0< l\le+\infty 0<l+ ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}y_n n=1yn发散,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散。

 (3)柯西判别法: ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn为正项级数,且 lim ⁡ n → ∞ ‾ x n n = r \overline{\lim_{n\to\infty}}\sqrt[n]{x_n}=r nlimnxn =r,则:
  i)若 r < 1 r<1 r<1 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
  ii)若 r > 1 r>1 r>1 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散。
  iii)若 r = 1 r=1 r=1,判别法失效。
 pf:与几何级数进行比较。
 (4)达朗贝尔判别法: ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn为正项级数, x n > 0 x_n>0 xn>0
  若 lim ⁡ n → ∞ ‾ x n + 1 x n = r ‾ < 1 \overline{\lim_{n\to\infty}}\frac{x_{n+1}}{x_n}=\overline{r}<1 limnxnxn+1=r<1,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
  若 lim ⁡ n → ∞ ‾ x n + 1 x n = r ‾ > 1 \underline{\lim_{n\to\infty}}\frac{x_{n+1}}{x_n}=\underline{r}>1 limnxnxn+1=r>1,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散。
  若 r ‾ ≥ 1 \overline{r}\ge1 r1 r ‾ ≤ 1 \underline{r}\le1 r1,判别法失效。
 (5)拉贝判别法: ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn为正项级数, x n > 0 x_n>0 xn>0 lim ⁡ n → ∞ n ( x n x n + 1 − 1 ) = r \lim_{n\to\infty}n(\frac{x_n}{x_{n+1}}-1)=r nlimn(xn+1xn1)=r
  i)若 r > 1 r>1 r>1 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
  ii)若 r < 1 r<1 r<1 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn发散。
  iii)若 r = 1 r=1 r=1,判别法失效。
 (6)积分判别法:设函数 f ( x ) f(x) f(x) [ 1 , + ∞ ) [1,+\infty) [1,+)上单调下降趋于0。记 a n = f ( n ) , ( n = 1 , 2 , . . . ) a_n=f(n),(n=1,2,...) an=f(n),(n=1,2,...),则正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an与反常积分 ∫ 1 + ∞ f ( x ) d x \int_{1}^{+\infty}f(x)dx 1+f(x)dx同时敛散。

任意项级数

1.概念

(1) ∑ n = 1 ∞ x n = ∑ n = 1 ∞ ( − 1 ) n + 1 u n ( u n > 0 ) \sum_{n=1}^{\infty}x_n=\sum_{n=1}^{\infty}(-1)^{n+1}u_n(u_n>0) n=1xn=n=1(1)n+1un(un>0)称为交错级数。
 若 u n u_n un单调趋于0,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn称为莱布尼兹级数。

2.敛散性的判别

(1)级数的柯西收敛原理: ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛的充分必要条件是: ∀ ϵ > 0 , ∃ N , ∀ m > n > N : \forall \epsilon>0,\exist N,\forall m>n>N: ϵ>0,N,m>n>N: ∣ x n + 1 + x n + 2 + ⋯ + x m ∣ < ϵ . |x_{n+1}+x_{n+2}+\cdots+x_m|<\epsilon. xn+1+xn+2++xm<ϵ.
 ps:若 ∑ n = 1 ∞ ∣ x n ∣ \sum_{n=1}^{\infty}|x_n| n=1xn收敛,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_n n=1xn收敛。
(2)莱布尼兹级数收敛。
(3)乘积级数 ∑ n = 1 ∞ a n b n \sum_{n=1}^{\infty}a_nb_n n=1anbn:
  引理1(Abel变换):
     { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}为两个数列,记 B k = ∑ i = 1 k b i B_k=\sum_{i=1}^kb_i Bk=i=1kbi,则: ∑ k = 1 p a k b k = a p B p − ∑ k = 1 p − 1 ( a k + 1 − a K ) B k \sum_{k=1}^pa_kb_k=a_pB_p-\sum_{k=1}^{p-1}(a_{k+1}-a_K)B_k k=1pakbk=apBpk=1p1(ak+1aK)Bk
  引理2(Abel引理):
    若(1) { a n } \{a_n\} {an}单调(2) ∣ B k ∣ < M , ∀ k |B_k|<M,\forall k Bk<M,k,则: ∣ ∑ k = 1 p a k b k ∣ ≤ M ( ∣ a 1 ∣ + 2 ∣ a p ∣ ) |\sum_{k=1}^pa_kb_k|\le M(|a_1|+2|a_p|) k=1pakbkM(a1+2ap)

  A-D判别法:
     ∑ n = 1 ∞ a n b n \sum_{n=1}^\infty a_nb_n n=1anbn满足下列两个条件之一,则 ∑ n = 1 ∞ a n b n \sum_{n=1}^\infty a_nb_n n=1anbn收敛:
    i)(Abel) { a n } \{a_n\} {an}单调有界, ∑ n = 1 ∞ b n \sum_{n=1}^\infty b_n n=1bn收敛。
    ii)(Dirichlet)若 { a n } \{a_n\} {an}单调趋于0, { B n = ∑ i = 1 n b i } \{B_n=\sum_{i=1}^n b_i\} {Bn=i=1nbi}有界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值