数学分析笔记9:数项级数

数项级数的定义和相关概念

所谓无穷级数就是可列个实数相加。那么,该如何定义可列个实数的和呢?我们已经有了有限个实数的和,对一个数列 { x n } \{x_n\} { xn},我们有前n个实数的和 S n = ∑ k = 1 n x k S_n = \sum_{k=1}^n{x_k} Sn=k=1nxk这就组成了部分和序列 { S n } \{S_n\} { Sn},很自然地,我们就想到用部分和序列的数列极限来作为可列个实数的和。
定义9.1 { x n } \{x_n\} { xn}是实数列,如果极限 lim ⁡ n → ∞ ∑ k = 1 n x k \lim_{n\to \infty}{\sum_{k=1}^{n}{x_k}} nlimk=1nxk存在,那么称级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛,记为 ∑ n = 1 ∞ x n = lim ⁡ n → ∞ ∑ k = 1 n x k \sum_{n=1}^{\infty}{x_n} = \lim_{n\to\infty}{\sum_{k=1}^n{x_k}} n=1xn=nlimk=1nxk

定理9.1(数项级数收敛的必要条件) { x n } \{x_n\} { xn}是实数列,如果级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛,则 lim ⁡ n → ∞ x n = 0 \lim_{n\to\infty}{x_n}=0 nlimxn=0

证:
x n = S n − S n − 1 ( n ≥ 2 ) x_n=S_n-S_{n-1}(n\ge 2) xn=SnSn1(n2)
两边取极限就能证得结论

同样地,由柯西准则,我们可以得到级数收敛的一个充要条件。
定理9.2(数项级数收敛的柯西准则) { x n } \{x_n\} { xn}是实数列,则级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛的充分必要条件是对任意的正数 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,对任意的 n ≥ N n\ge N nN,对任意的正整数 p p p,都有 ∣ ∑ k = n n + p x k ∣ < ε |\sum_{k=n}^{n+p}{x_k}|<\varepsilon k=nn+pxk<ε
类似于广义积分的绝对收敛和条件收敛,级数也有相应的条件收敛和绝对收敛。
定义9.2 { x n } \{x_n\} { xn}是实数列,如果 ∑ n = 1 ∞ ∣ x n ∣ \sum_{n=1}^{\infty}{|x_n|} n=1xn收敛,就称级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn绝对收敛,如果级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛,但不绝对收敛,就称级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn条件收敛

定理9.3 { x n } \{x_n\} { xn}是实数列,如果 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn绝对收敛,则级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛

证明是类似的,这里不证。

这样,我们判断一个级数是否收敛,首先判断通项是否趋于0,其次判断是否绝对收敛,在不绝对收敛的条件下再判断是否条件收敛。

级数审敛法

比较判别法

由于绝对收敛蕴含着级数收敛,因此,我们首先考虑正项级数的敛散性的判断。同样地,如果 x n ≥ 0 ( n ≥ 1 ) x_n\ge 0(n\ge 1) xn0(n1),那么部分和序列 { S n } \{S_n\} { Sn}单调上升,这样,级数的收敛等价于部分和序列是否有界。
定理9.5 { x n } \{x_n\} { xn}是非负实数列,则正项级数 ∑ n = 1 ∞ x n \sum_{n=1}^\infty{x_n} n=1xn收敛的充分必要条件是存在正实数 M > 0 M>0 M>0,对任意的 n ≥ 1 n\ge 1 n1,部分和 ∑ k = 1 n x k ≤ M \sum_{k=1}^{n}{x_k}\le M k=1nxkM

这样,就可以通过和基准级数的比较来判断正项级数的敛散性。
定理9.6 { x n } \{x_n\} { xn} { y n } \{y_n\} { yn}是两个非负实数列,如果存在正整数 N N N及正实数 c 1 > 0 , c 2 > 0 c_1>0,c_2>0 c1>0,c2>0,当 n ≥ N n\ge N nN时, c 1 x n ≤ c 2 y n c_1x_n\le c_2y_n c1xnc2yn,则
(1) ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn发散,则 ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}{y_n} n=1yn发散
(2) ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}{y_n} n=1yn收敛,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛

类似于广义积分,比较审敛法也有其极限形式。
定理9.7 { x n } \{x_n\} { xn} { y n } \{y_n\} { yn}是两个非负实数列, y n > 0 ( n ≥ 1 ) y_n>0(n\ge 1) yn>0(n1),如果 lim ⁡ n → ∞ x n y n = a \lim_{n\to\infty}{\frac{x_n}{y_n}}=a nlimynxn=a(1) a = 0 a=0 a=0则,如果 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn发散, ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}{y_n} n=1yn发散,如果 ∑ n = 1 ∞ y n \sum_{n=1}^{\infty}{y_n} n=1yn收敛, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn收敛
(2) 0 < a < ∞ 0<a<\infty 0<a<,则 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x_n} n=1xn ∑ n = 1

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值