[高等数学]微分方程笔记
概念:
(1)微分方程
指含有微分式的方程,形如 F ( x , y , y ′ . . . y ( n ) ) = 0 F(x,y,y'...y^{(n)})=0 F(x,y,y′...y(n))=0,其阶数为方程中最高阶导数的阶数。
(2)解
通解:解中任意常数的个数与方程的阶数相等。
特解:不含任意常数的解。
(3)初始条件
指用来确定解中任意常数的附加条件。
分类讨论:
1.可分离变量的情形
形如 f ( x ) d x = g ( y ) d y f(x)dx=g(y)dy f(x)dx=g(y)dy的微分方程称为可分离变量的微分方程,其特点是形式简单,两边同时求积分即可得到通解。
2.齐次微分方程
一般来说,形如 d y d x = ϕ ( y x ) \frac{dy}{dx}=\phi (\frac yx) dxdy=ϕ(xy)的微分方程是齐次的,求解方法是做变换 u = y x u=\frac yx u=xy,得到 y = x u y=xu y=xu,进而 d y d x = u + x d u d x \frac {dy}{dx}=u+x\frac{du}{dx} dxdy=u+xdxdu,代入原方程即可得到分离变量的情形。
另外,形如 d y d x = a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 \frac{dy}{dx}=\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2} dxdy=a2x+b2y+c2a1x+b1y+c1的方程可经过适当变换 X = x + k , Y = y + t X=x+k,Y=y+t X=x+k,Y=y+t后将常数项消掉,从而化为齐次方程。
3.一阶线性微分方程
形如 d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程称为一阶线性微分方程。
(1) Q ( x ) ≡ 0 Q(x)\equiv0 Q(x)≡0的齐次情形
化简原方程有
d
y
y
=
−
P
(
x
)
d
x
l
n
(
y
)
=
−
∫
P
(
x
)
d
x
y
=
c
e
−
∫
P
(
x
)
d
x
\begin{aligned} \frac{dy}{y}&=-P(x)dx\\ ln(y)&=-\int P(x)dx\\ y&=ce^{-\int P(x)dx} \end{aligned}
ydyln(y)y=−P(x)dx=−∫P(x)dx=ce−∫P(x)dx
(2)非齐次的情形
做换元
y
=
u
e
−
∫
P
(
x
)
d
x
y=ue^{-\int P(x)dx}
y=ue−∫P(x)dx,代入原方程化简有:
Q
(
x
)
=
u
′
e
−
∫
P
(
x
)
d
x
u
=
∫
Q
(
x
)
e
∫
P
(
x
)
d
x
d
x
+
c
\begin{aligned} Q(x)&=u'e^{-\int P(x)dx} \\ u&=\int Q(x)e^{\int P(x)dx}dx+c \\ \end{aligned}
Q(x)u=u′e−∫P(x)dx=∫Q(x)e∫P(x)dxdx+c最终得到:
y
=
e
−
∫
P
(
x
)
d
x
(
∫
Q
(
x
)
e
∫
P
(
x
)
d
x
d
x
+
c
)
y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+c)
y=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+c)
(3)伯努利方程
形如 d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y=Q(x)y^n dxdy+P(x)y=Q(x)yn的方程称为伯努利方程,考虑 n ≠ 0 , 1 n\ne 0,1 n=0,1的情形,两同时除以 y n y^n yn有: y − n d y d x + P ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x) y−ndxdy+P(x)y1−n=Q(x),于是做换元 z = y 1 − n z=y^{1-n} z=y1−n有: 1 1 − n d z d x = y − n d y d x \frac{1}{1-n}\frac{dz}{dx}=y^{-n}\frac{dy}{dx} 1−n1dxdz=y−ndxdy,于是: d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1−n)P(x)z=(1−n)Q(x),即可划归为前文提到的形式。
4.可降阶的高阶微分方程
(1) y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)
解法:连续求n次积分。
(2) y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y′)
令 y ′ = p y'=p y′=p,则 y ′ ′ = p ′ y''=p' y′′=p′,于是可化为关于p的一阶微分方程。
(3) y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y′)
令 y ′ = p y'=p y′=p,则有 y ′ ′ = d p d x = d p d y d y d x = p d p d y y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp,代入原方程,解出p关于y的方程,再按y的一阶微分方程求解即可。
5.常系数齐次线性微分方程
(1)线性微分方程解的结构
形如
y
′
′
+
p
(
x
)
y
′
+
q
(
x
)
y
=
0
y''+p(x)y'+q(x)y=0
y′′+p(x)y′+q(x)y=0的方程为二阶齐次线性微分方程,一般无法给出其通解。但是其解满足叠加原理:
若
y
1
,
y
2
y_1,y_2
y1,y2是
y
′
′
+
p
(
x
)
y
′
+
q
(
x
)
y
=
0
y''+p(x)y'+q(x)y=0
y′′+p(x)y′+q(x)y=0的两个解,则
c
1
y
1
+
c
2
y
2
c_1y_1+c_2y_2
c1y1+c2y2也是原方程的解,其中
c
1
,
c
2
c_1,c_2
c1,c2为任意常数。对于n阶齐次线性微分方程:
y
(
n
)
+
p
1
(
x
)
y
(
n
−
1
)
+
⋯
+
p
n
−
1
(
x
)
y
′
+
p
n
(
x
)
y
=
0
y^{(n)}+p_1(x)y^{(n-1 )}+\cdots+p_{n-1}(x)y'+p_n(x)y=0
y(n)+p1(x)y(n−1)+⋯+pn−1(x)y′+pn(x)y=0同样满足上述叠加原理。
注意,若解 y 1 , y 2 y_1,y_2 y1,y2线性无关,则 c 1 y 1 + c 2 y 2 c_1y_1+c_2y_2 c1y1+c2y2成为原方程的通解。且有以下刘维尔公式: y 2 = y 1 ∫ 1 y 1 2 e ∫ − p ( x ) d x d x y_2=y_1\int \frac{1}{y_1^2} e^{\int -p(x)dx}dx y2=y1∫y121e∫−p(x)dxdx
对于非齐次的情形:
y
′
′
+
p
(
x
)
y
′
+
q
(
x
)
y
=
f
(
x
)
y''+p(x)y'+q(x)y=f(x)
y′′+p(x)y′+q(x)y=f(x),若
y
∗
y^*
y∗为该方程的一个特解,
Y
=
c
1
y
1
+
c
2
y
2
Y=c_1y_1+c_2y_2
Y=c1y1+c2y2为对应齐次方程
y
′
′
+
p
(
x
)
y
′
+
q
(
x
)
y
=
0
y''+p(x)y'+q(x)y=0
y′′+p(x)y′+q(x)y=0的通解,那么
y
=
y
∗
+
Y
y=y^*+Y
y=y∗+Y成为原方程的通解。其中
y
∗
y^*
y∗可以表示为:
y
∗
=
u
y
1
+
v
y
2
u
=
∫
−
y
2
f
(
x
)
∣
y
1
y
2
y
1
′
y
2
′
∣
d
x
,
v
=
∫
y
1
f
(
x
)
∣
y
1
y
2
y
1
′
y
2
′
∣
d
x
\begin{aligned} y^*&=uy_1+vy_2 \\ u&=\int \frac{-y_2f(x)}{\begin{vmatrix} y_1&y_2 \\ y_1'&y_2' \end{vmatrix}}dx,\\ v&=\int \frac{y_1f(x)}{\begin{vmatrix} y_1&y_2 \\ y_1'&y_2' \end{vmatrix}}dx\\ \end{aligned}
y∗uv=uy1+vy2=∫∣∣∣∣y1y1′y2y2′∣∣∣∣−y2f(x)dx,=∫∣∣∣∣y1y1′y2y2′∣∣∣∣y1f(x)dx
此外,若已知
y
1
∗
,
y
2
∗
y_1^*,y_2^*
y1∗,y2∗是原方程的两个特解,则
y
1
∗
−
y
2
∗
y_1^*-y_2^*
y1∗−y2∗是对应齐次方程的解,通过刘维尔公式可以求得另一个线性无关解,从而得到原方程的通解。
(2)常系数齐次线性微分方程解法
二阶
对于二阶常系数齐次线性微分方程 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py′+qy=0,我们有以下解法:
化为特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0,求得两个解 r 1 , r 2 r_1,r_2 r1,r2:
(1) Δ > 0 \Delta>0 Δ>0:
y = c 1 e r 1 x + c 2 e r 2 x y=c_1e^{r_1x}+c_2e^{r_2x} y=c1er1x+c2er2x
(2) Δ = 0 \Delta=0 Δ=0:
y = ( c 1 + c 2 x ) e c 1 x y=(c_1+c_2x)e^{c_1x} y=(c1+c2x)ec1x
(2) Δ < 0 , r 1 = α + β i , r 2 = α − β i \Delta<0,r_1=\alpha+\beta i,r_2=\alpha-\beta i Δ<0,r1=α+βi,r2=α−βi:
y = e α x ( c 1 c o s β x + c 2 s i n β x ) y=e^{\alpha x}(c_1cos\beta x+c_2sin\beta x) y=eαx(c1cosβx+c2sinβx)
非齐次的特解形式*
考虑 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py′+qy=f(x)的非齐次情形。
(1) f ( x ) = e λ x P n ( x ) f(x)=e^{\lambda x}P_n(x) f(x)=eλxPn(x)
特解形式为:
y
∗
=
x
k
e
λ
x
Q
n
(
x
)
y^*=x^ke^{\lambda x}Q_n(x)
y∗=xkeλxQn(x),其中
Q
n
(
x
)
Q_n(x)
Qn(x)为n次待定系数多项式,k满足:
{
k
=
0
,
λ
不
是
特
征
方
程
的
根
k
=
1
,
λ
是
特
征
方
程
的
单
根
k
=
2
,
λ
是
特
征
方
程
的
重
根
\begin{cases} & k=0,\quad \lambda不是特征方程的根 \\ & k=1,\quad \lambda是特征方程的单根 \\ & k=2,\quad \lambda是特征方程的重根 \end{cases}
⎩⎪⎨⎪⎧k=0,λ不是特征方程的根k=1,λ是特征方程的单根k=2,λ是特征方程的重根
(2) f ( x ) = e α x ( P n ( x ) c o s β x + Q m ( x ) s i n β x ) f(x)=e^{\alpha x}(P_n(x)cos\beta x+Q_m(x)sin\beta x) f(x)=eαx(Pn(x)cosβx+Qm(x)sinβx),其中 P n ( x ) , Q m ( x ) P_n(x),Q_m(x) Pn(x),Qm(x)分别为n,m次多项式
特解形式为:
y
∗
=
x
k
e
α
x
(
S
l
(
x
)
c
o
s
β
x
+
R
l
(
x
)
s
i
n
β
x
)
y^*=x^ke^{\alpha x}(S_l(x)cos\beta x+R_l(x)sin\beta x)
y∗=xkeαx(Sl(x)cosβx+Rl(x)sinβx),其中
l
=
m
a
x
(
m
,
n
)
l=max(m,n)
l=max(m,n),
S
l
(
x
)
,
R
l
(
x
)
S_l(x),R_l(x)
Sl(x),Rl(x)是含待定系数的l次多项式,k满足:
{
k
=
0
,
α
±
β
i
不
是
特
征
方
程
的
根
k
=
1
,
α
±
β
i
是
特
征
方
程
的
根
\begin{cases} & k=0 ,\quad\alpha \pm \beta i 不是特征方程的根\\ & k=1 ,\quad\alpha \pm \beta i 是特征方程的根 \end{cases}
{k=0,α±βi不是特征方程的根k=1,α±βi是特征方程的根
高阶
特征方程的根 | 齐次微分方程通解中所含的项 |
---|---|
单实根 | c e r x ce^{rx} cerx |
k重实根 | ( c 1 + c 2 x + ⋯ + c k x k − 1 ) e r x (c_1+c_2x+\cdots+c_kx^{k-1})e^{rx} (c1+c2x+⋯+ckxk−1)erx |
2重共轭复根( α ± β i \alpha \pm \beta i α±βi) | e α x [ ( c 1 + c 2 x ) c o s β x + ( c 3 + c 4 x ) s i n β x ] e^{\alpha x}[(c_1+c_2x)cos\beta x+(c_3+c_4x)sin\beta x] eαx[(c1+c2x)cosβx+(c3+c4x)sinβx] |
E u l e r Euler Euler方程*
二阶欧拉方程的形式为: x 2 y ′ ′ + a 1 x y ′ + a 2 y = f ( x ) x^2y''+a_1xy'+a_2y=f(x) x2y′′+a1xy′+a2y=f(x),做变换 x = e t , t = l n x x=e^t,t=lnx x=et,t=lnx有: y ′ ′ + ( a 1 − 1 ) y ′ + a 2 y = f ( e t ) y''+(a_1-1)y'+a_2y=f(e^t) y′′+(a1−1)y′+a2y=f(et),此即为二阶常系数线性微分方程。
总结
对于一个任意的齐次常系数微分方程: ∑ k = 0 N a k d k y p ( t ) d t k = x ( t ) \sum_{k=0}^Na_k\frac{d^ky_p(t)}{dt^k}=x(t) k=0∑Nakdtkdkyp(t)=x(t),其解法为:
- 列特征方程:
F ( s ) = ( a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ) = 0 F ( s ) = a n ∏ i = 1 p ( s − s i ) n i , a n d ∑ i p n i = N s i : 特 征 根 \begin{aligned} F(s)&=(a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0)=0\\ F(s)&=a_n\prod_{i=1}^p(s-s_i)^{n_i},\quad and \quad\sum_i^pn_i=N\\ s_i&:特征根 \end{aligned} F(s)F(s)si=(ansn+an−1sn−1+⋯+a1s+a0)=0=ani=1∏p(s−si)ni,andi∑pni=N:特征根 - 得到通解:
y h ( t ) = ∑ i = 1 p ( A i , n i − 1 t n i − 1 + ⋯ + A i , 1 t + A i , 0 ) e s i t A i , j : 任 意 常 数 \begin{aligned} y_h(t)&=\sum_{i=1}^p(A_{i,n_i-1}t^{n_i-1}+\cdots+A_{i,1}t+A_{i,0})e^{s_it}\\ A_{i,j}&:任意常数 \end{aligned} yh(t)Ai,j=i=1∑p(Ai,ni−1tni−1+⋯+Ai,1t+Ai,0)esit:任意常数 - 得到特解:
设 x ( t ) = ( C m t m + C m − 1 t m − 1 + ⋯ + C 0 ) e s t k : s 是 k 重 特 征 根 则 y p ( t ) = ( B m t m + B m − 1 t m − 1 + ⋯ + B 0 ) t k e s t \begin{aligned} 设x(t)&=(C_mt^m+C_{m-1}t^{m-1}+\cdots+C_0)e^{st}\\ k&:s是k重特征根\\ 则y_p(t)&=(B_mt^m+B_{m-1}t^{m-1}+\cdots+B_0)t^ke^{st} \end{aligned} 设x(t)k则yp(t)=(Cmtm+Cm−1tm−1+⋯+C0)est:s是k重特征根=(Bmtm+Bm−1tm−1+⋯+B0)tkest
- 得到全解并使用初始条件(松弛条件)求得解中常数值:
y ( t ) = y h ( t ) + y p ( t ) y(t)=y_h(t)+y_p(t) y(t)=yh(t)+yp(t)