H.264之指数哥伦布编解码分析
转自: http://blog.csdn.net/carrotchen/article/details/5664623
1. H.264/AVC标准规定了一系列编码方法,用于把符号编码成二进制比特流。这些方法包括:
FLC (定长码)
ExpG (指数哥伦布码)
CAVLC
CABAC
位于Slice data级别之上的符号,使用FLC或ExpG编码。
2. ExpG依据变字长编码理论。在变字长编码中,编码器的编码输出码字是长度不等的码字。大概率出现的信息符号,赋以短字长的码字;小概率出现的信息符号,赋以长字长的码字。
ExpG码字的二进制结构如下:
[前导零][1][INFO]
码字包含M个前导零(M>=0),
bit 1,
M-bit信息域INFO。
根据输入的参数code_num,ExpG码的编码过程是:
M = floor(log2(code_num + 1))
INFO = code_num + 1 - 2^M
相应的,解码过程是:
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
由此,ExpG的码字长度是2M+1比特。
3. 映射
H.264的语法参数k通过4种方式映射为code_num,然后对code_num使用ExpG编码,生成二进制码字。
4种映射方式:
ue 无符号直接映射,code_num = k
te 截断映射
se 有符号映射,code_num = 2|k| (k<=0)
code_num = 2|k| - 1 (k>0)
me 根据标准中指定的表
4. ExpG解码的实现与优化
以FFMpeg中的get_ue_golomb()函数为例,ExpG的解码算法的优化既考虑运算量又考虑存储空间。
(1) 根据当前二进制ExpG码的比特地址index,读取n-bit的二进制数据到32-bit buf。
buf = swap32(*(uint32_t *)((uint8_t *)bit_stream + (index>>3))) << (index&0x07)
swap32()的作用是在按32位读取bit stream时,处理大尾数、小尾数的转换。
--------------------------
| index%8 | buf的有效位n |
--------------------------
| 0 | 32-bit |
--------------------------
| 1 | 31-bit |
--------------------------
| 2 | 30-bit |
--------------------------
| 3 | 29-bit |
--------------------------
| 4 | 28-bit |
--------------------------
| 5 | 27-bit |
--------------------------
| 6 | 26-bit |
--------------------------
| 7 | 25-bit |
--------------------------
例如,当index%8=7时,buf的[31,6]位是有效的。
(2) 通过查表与计算相结合的方法,确定ExpG的码长,再进行解码。
(2.1) FFMpeg的实现方法是对码长不超过9-bit的ExpG码字制作查找表,如下:
当(buf >= 1<<27),取buf的最高9位,
ExpG码 00001xxxx,码长9-bit,解码结果为[15,30];
ExpG码 0001xxxnn,码长7-bit,解码结果为[7,14],n表示不属于该ExpG码的bit;
ExpG码 001xxnnnn,码长5-bit,解码结果为[3,6],n表示不属于该ExpG码的bit;
ExpG码 01xnnnnnn,码长3-bit,解码结果为[1,2],n表示不属于该ExpG码的bit;
ExpG码 1nnnnnnnn,码长1-bit,解码结果为0,n表示不属于该ExpG码的bit。
查找表为
index = [16,31] ~ codeword_length = 9 ~ code_num = [15,30]
index = [32,63] ~ codeword_length = 7 ~ code_num = [7,14]
index = [64,127] ~ codeword_length = 5 ~ code_num = [3,6]
index = [128,255] ~ codeword_length = 3 ~ code_num = [1,2]
index = [256,511] ~ codeword_length = 1 ~ code_num = 0
(2.2) 对于码长大于9-bit的ExpG码,
(a) 算出bit 1的位置x
(b) ExpG码长 = 2*(31-x) + 1
(c) ExpG码 = buf >> 32 - (2*(31-x)+1) = buf >> (2*x - 31)
(d) code_num = ExpG码 - 1
当读入buf的有效位是25-bit时,FFMpeg的ExpG解码优化算法能表示的最大值为8190。
转自: http://blog.csdn.net/carrotchen/article/details/5664623
1. H.264/AVC标准规定了一系列编码方法,用于把符号编码成二进制比特流。这些方法包括:
FLC (定长码)
ExpG (指数哥伦布码)
CAVLC
CABAC
位于Slice data级别之上的符号,使用FLC或ExpG编码。
2. ExpG依据变字长编码理论。在变字长编码中,编码器的编码输出码字是长度不等的码字。大概率出现的信息符号,赋以短字长的码字;小概率出现的信息符号,赋以长字长的码字。
ExpG码字的二进制结构如下:
[前导零][1][INFO]
码字包含M个前导零(M>=0),
bit 1,
M-bit信息域INFO。
根据输入的参数code_num,ExpG码的编码过程是:
M = floor(log2(code_num + 1))
INFO = code_num + 1 - 2^M
相应的,解码过程是:
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
由此,ExpG的码字长度是2M+1比特。
3. 映射
H.264的语法参数k通过4种方式映射为code_num,然后对code_num使用ExpG编码,生成二进制码字。
4种映射方式:
ue 无符号直接映射,code_num = k
te 截断映射
se 有符号映射,code_num = 2|k| (k<=0)
code_num = 2|k| - 1 (k>0)
me 根据标准中指定的表
4. ExpG解码的实现与优化
以FFMpeg中的get_ue_golomb()函数为例,ExpG的解码算法的优化既考虑运算量又考虑存储空间。
(1) 根据当前二进制ExpG码的比特地址index,读取n-bit的二进制数据到32-bit buf。
buf = swap32(*(uint32_t *)((uint8_t *)bit_stream + (index>>3))) << (index&0x07)
swap32()的作用是在按32位读取bit stream时,处理大尾数、小尾数的转换。
--------------------------
| index%8 | buf的有效位n |
--------------------------
| 0 | 32-bit |
--------------------------
| 1 | 31-bit |
--------------------------
| 2 | 30-bit |
--------------------------
| 3 | 29-bit |
--------------------------
| 4 | 28-bit |
--------------------------
| 5 | 27-bit |
--------------------------
| 6 | 26-bit |
--------------------------
| 7 | 25-bit |
--------------------------
例如,当index%8=7时,buf的[31,6]位是有效的。
(2) 通过查表与计算相结合的方法,确定ExpG的码长,再进行解码。
(2.1) FFMpeg的实现方法是对码长不超过9-bit的ExpG码字制作查找表,如下:
当(buf >= 1<<27),取buf的最高9位,
ExpG码 00001xxxx,码长9-bit,解码结果为[15,30];
ExpG码 0001xxxnn,码长7-bit,解码结果为[7,14],n表示不属于该ExpG码的bit;
ExpG码 001xxnnnn,码长5-bit,解码结果为[3,6],n表示不属于该ExpG码的bit;
ExpG码 01xnnnnnn,码长3-bit,解码结果为[1,2],n表示不属于该ExpG码的bit;
ExpG码 1nnnnnnnn,码长1-bit,解码结果为0,n表示不属于该ExpG码的bit。
查找表为
index = [16,31] ~ codeword_length = 9 ~ code_num = [15,30]
index = [32,63] ~ codeword_length = 7 ~ code_num = [7,14]
index = [64,127] ~ codeword_length = 5 ~ code_num = [3,6]
index = [128,255] ~ codeword_length = 3 ~ code_num = [1,2]
index = [256,511] ~ codeword_length = 1 ~ code_num = 0
(2.2) 对于码长大于9-bit的ExpG码,
(a) 算出bit 1的位置x
(b) ExpG码长 = 2*(31-x) + 1
(c) ExpG码 = buf >> 32 - (2*(31-x)+1) = buf >> (2*x - 31)
(d) code_num = ExpG码 - 1
当读入buf的有效位是25-bit时,FFMpeg的ExpG解码优化算法能表示的最大值为8190。
下面 是自己的理解:
---------------------------------
/*
ExpG码字的二进制结构如下:
[前导零][1][INFO]
码字包含M个前导零(M>=0),
bit 1,
M-bit信息域INFO。
根据输入的参数code_num,ExpG码的编码过程是:
M = floor(log2(code_num + 1))
INFO = code_num + 1 - 2^M
相应的,解码过程是:
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
*/
#include <stdio.h>
#include <math.h>
int main(int argc,void *argv[])
{
int code_num=20;
double M;
double INFO;
unsigned int encode_result;
//------------------------encode exp-golomb
M =floor(log2((double)code_num + 1));
//INFO = code_num + 1 - 2^M;
INFO = code_num + 1 - pow(2,M);
encode_result=1<<(int)M|(unsigned int)INFO;
printf("native value is 0x%02x,encode_result is:0x%02x\n",code_num,encode_result);
//------------- decode exp-golomb
/*
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
*/
//解码捷径方法是:从第一个bit开始找,找到第一个1,记录bit 0的个数为m,从第一个1后取m个bit,这样把第一个1和后面m个bits组合成一个数据减去1,
//就是golomb编码之前的数据。
}
//compile:gcc test_math_function.c -o test_math_function -lm
ExpG码字的二进制结构如下:
[前导零][1][INFO]
码字包含M个前导零(M>=0),
bit 1,
M-bit信息域INFO。
根据输入的参数code_num,ExpG码的编码过程是:
M = floor(log2(code_num + 1))
INFO = code_num + 1 - 2^M
相应的,解码过程是:
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
*/
#include <stdio.h>
#include <math.h>
int main(int argc,void *argv[])
{
int code_num=20;
double M;
double INFO;
unsigned int encode_result;
//------------------------encode exp-golomb
M =floor(log2((double)code_num + 1));
//INFO = code_num + 1 - 2^M;
INFO = code_num + 1 - pow(2,M);
encode_result=1<<(int)M|(unsigned int)INFO;
printf("native value is 0x%02x,encode_result is:0x%02x\n",code_num,encode_result);
//------------- decode exp-golomb
/*
(1) 读取一系列连续的bit 0直到bit 1,记录bit 0的个数(M),
(2) 读取bit 1
(3) 读取M-bit = INFO
(4) code_num = 2^M + INFO - 1
*/
//解码捷径方法是:从第一个bit开始找,找到第一个1,记录bit 0的个数为m,从第一个1后取m个bit,这样把第一个1和后面m个bits组合成一个数据减去1,
//就是golomb编码之前的数据。
}
//compile:gcc test_math_function.c -o test_math_function -lm