48、行人检测与车辆重识别技术解析

行人检测与车辆重识别技术解析

行人检测方法 PDSA

在行人检测领域,提出了一种名为 PDSA 的新方法,旨在解决行人遮挡问题。

分割网络结构

分割网络采用与 VGG16 相同的结构,但移除了池化层,并将后续的两个卷积块替换为扩张卷积块(B4 和 B5)。还利用两个带有 Sigmoid 函数的 1×1 卷积层(B6 和 B7)分别生成分割预测和语义注意力图。
由于真实标签是可见边界框,仅包含四个坐标点,不能直接输入。因此,将可见边界框缩放为 1/4,使其与分割预测结果大小相同,并将可见边界框内的所有像素设为 1,其他像素设为 0,从而得到分割真实标签。

损失函数

由于可见部分占比小,导致正负样本不平衡。为使语义分割任务收敛,引入了焦点损失进行优化:
[
L_{Segmentation} =
\begin{cases}
-(1 - p)^c \log(p) & \text{if } y = 1 \
-p^c \log(1 - p) & \text{otherwise}
\end{cases}
]
其中,$y \in {0, 1}$ 是每个像素的真实类别,$p \in [0, 1]$ 是标签 $y = 1$ 类别的概率。

PDSA 的最终目标函数为:
[
L = L_{Regression} + L_{Classification} + \alpha L_{Rep} + \beta L_{Segmentation}
]
其中,$L_{Regression}$ 是原始边界框回

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值